mirror of https://github.com/PyRetri/PyRetri.git
3.6 KiB
3.6 KiB
Model Zoo
Here we provide the pre-trained models to help you reproduce our experimental results easily.
General image retrieval
pre-trained models
Training Set | Backbone | for Short | Download |
---|---|---|---|
ImageNet | VGG-16 | I-VGG16 | model |
Places365 | VGG-16 | P-VGG16 | model |
ImageNet + Places365 | VGG-16 | H-VGG16 | model |
ImageNet | ResNet-50 | I-Res50 | model |
Places365 | ResNet-50 | P-Res50 | model |
ImageNet + Places365 | ResNet-50 | H-Res50 | model |
performance
Dataset | Data Augmentation | Backbone | Pooling | Dimension Process | mAP |
---|---|---|---|---|---|
Oxford5k | ShorterResize + CenterCrop | H-VGG16 | GAP | l2 +SVD(whiten) + l2 | 62.9 |
CUB-200 | ShorterResize + CenterCrop | I-Res50 | SCDA | l2 + PCA + l2 | 27.8 |
Indoor | DirectResize | P-Res50 | CroW | l2 + PCA + l2 | 51.8 |
Caltech101 | PadResize | I-Res50 | GeM | l2 + PCA + l2 | 77.9 |
Choosing the implementations mentioned above as baselines and adding some tricks, we have:
Dataset | Implementations | mAP |
---|---|---|
Oxford5k | baseline + K-reciprocal | 72.9 |
CUB-200 | baseline + K-reciprocal | 38.9 |
Indoor | baseline + DBA + QE | 63.7 |
Caltech101 | baseline + DBA + QE + K-reciprocal | 86.1 |
Person re-identification
For person re-identification, we use the model provided by Person_reID_baseline and reproduce its resutls. In addition, we train a model on DukeMTMC-reID through the open source code for further experiments.
pre-trained models
Training Set | Backbone | for Short | Download |
---|---|---|---|
Market-1501 | ResNet-50 | M-Res50 | model |
DukeMTMC-reID | ResNet-50 | D-Res50 | model |
performance
Dataset | Data Augmentation | Backbone | Pooling | Dimension Process | mAP | Recall@1 |
---|---|---|---|---|---|---|
Market-1501 | DirectResize + TwoFlip | M-Res50 | GAP | l2 | 71.6 | 88.8 |
DukeMTMC-reID | DirectResize + TwoFlip | D-Res50 | GAP | l2 | 62.5 | 80.4 |
Choosing the implementations mentioned above as baselines and adding some tricks, we have:
Dataset | Implementations | mAP | Recall@1 |
---|---|---|---|
Market-1501 | Baseline + l2 + PCA + l2 + K-reciprocal | 84.8 | 90.4 |
DukeMTMC-reID | Baseline + l2 + PCA + l2 + K-reciprocal | 78.3 | 84.2 |