PyRetri/search/search_pwa_extract.py

96 lines
3.9 KiB
Python

# -*- coding: utf-8 -*-
import os
import argparse
import importlib
from pyretri.config import get_defaults_cfg
from pyretri.datasets import build_folder, build_loader
from pyretri.models import build_model
from pyretri.extract import build_extract_helper
def load_datasets():
data_json_dir = "/home/songrenjie/projects/RetrievalToolBox/new_data_jsons/"
datasets = {
"oxford_gallery": os.path.join(data_json_dir, "oxford_gallery.json"),
"oxford_query": os.path.join(data_json_dir, "oxford_query.json"),
"cub_gallery": os.path.join(data_json_dir, "cub_gallery.json"),
"cub_query": os.path.join(data_json_dir, "cub_query.json"),
"indoor_gallery": os.path.join(data_json_dir, "indoor_gallery.json"),
"indoor_query": os.path.join(data_json_dir, "indoor_query.json"),
"caltech_gallery": os.path.join(data_json_dir, "caltech_gallery.json"),
"caltech_query": os.path.join(data_json_dir, "caltech_query.json"),
"paris_all": os.path.join(data_json_dir, "paris.json"),
}
for data_path in datasets.values():
assert os.path.exists(data_path), "non-exist dataset path {}".format(data_path)
return datasets
def parse_args():
parser = argparse.ArgumentParser(description='A tool box for deep learning-based image retrieval')
parser.add_argument('opts', default=None, nargs=argparse.REMAINDER)
parser.add_argument('--save_path', '-sp', default=None, type=str, help="the save path for feature")
parser.add_argument("--search_modules", "-sm", default="", type=str, help="name of search module's directory")
args = parser.parse_args()
return args
def main():
# init args
args = parse_args()
# init retrieval pipeline settings
cfg = get_defaults_cfg()
# load search space
datasets = load_datasets()
pre_processes = importlib.import_module("{}.pre_process_dict".format(args.search_modules)).pre_processes
models = importlib.import_module("{}.extract_dict".format(args.search_modules)).models
extracts = importlib.import_module("{}.extract_dict".format(args.search_modules)).extracts
for data_name, data_args in datasets.items():
for pre_proc_name, pre_proc_args in pre_processes.items():
for model_name, model_args in models.items():
feature_full_name = data_name + "_" + pre_proc_name + "_" + model_name
print(feature_full_name)
if os.path.exists(os.path.join(args.save_path, feature_full_name)):
print("[Search Extract]: config exists...")
continue
# load retrieval pipeline settings
cfg.datasets.merge_from_other_cfg(pre_proc_args)
cfg.model.merge_from_other_cfg(model_args)
cfg.extract.merge_from_other_cfg(extracts[model_name])
# set train feature path for pwa
pwa_train_fea_dir = os.path.join("/data/features/test_gap_gmp_gem_crow_spoc", feature_full_name)
if "query" in pwa_train_fea_dir:
pwa_train_fea_dir.replace("query", "gallery")
elif "paris" in pwa_train_fea_dir:
pwa_train_fea_dir.replace("paris", "oxford_gallery")
print("[PWA Extractor]: train feature: {}".format(pwa_train_fea_dir))
cfg.extract.aggregators.PWA.train_fea_dir = pwa_train_fea_dir
# build dataset and dataloader
dataset = build_folder(data_args, cfg.datasets)
dataloader = build_loader(dataset, cfg.datasets)
# build model
model = build_model(cfg.model)
# build helper and extract features
extract_helper = build_extract_helper(model, cfg.extract)
extract_helper.do_extract(dataloader, save_path=os.path.join(args.save_path, feature_full_name))
if __name__ == '__main__':
main()