PyRetri/configs/duke_w_tricks.yaml

71 lines
1.6 KiB
YAML

# retrieval settings
datasets:
batch_size: 16
collate_fn:
name: "CollateFn"
folder:
name: "Folder"
transformers:
names: ["DirectResize", "TwoFlip", "ToTensor", "Normalize"]
DirectResize:
size: (256, 128)
interpolation: 3
Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
model:
name: "ft_net"
ft_net:
load_checkpoint: "/home/songrenjie/projects/reID_baseline/model/ft_ResNet50/res50_duke.pth"
extract:
assemble: 1
extractor:
name: "ReIDSeries"
ReIDSeries:
extract_features: ["output"]
splitter:
name: "Identity"
aggregators:
names: ["GAP"]
index:
query_fea_dir: "/data/features/best_features/duke/query"
gallery_fea_dir: "/data/features/best_features/duke/gallery"
feature_names: ['output']
dim_processors:
names: ["L2Normalize", "PCA", "L2Normalize"]
PCA:
proj_dim: 512 # the dimension after reduction. If it is 0, then no reduction will be done.
whiten: False # whether do whiten when using PCA.
train_fea_dir: "/data/features/best_features/duke/gallery" # path of the features for training PCA.
l2: True # whether do l2-normalization on the training features.
feature_enhancer:
name: "Identity"
metric:
name: "KNN"
re_ranker:
name: "KReciprocal"
KReciprocal:
k1: 20 # hyper-parameter for calculating jaccard distance.
k2: 6 # hyper-parameter for calculating local query expansion.
lambda_value: 0.3 # hyper-parameter for calculating the final distance.
evaluate:
evaluator:
name: "ReIDOverAll"