mirror of https://github.com/RE-OWOD/RE-OWOD
71 lines
2.5 KiB
Python
71 lines
2.5 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import copy
|
||
|
import numpy as np
|
||
|
import os
|
||
|
import tempfile
|
||
|
import unittest
|
||
|
import cv2
|
||
|
import torch
|
||
|
from fvcore.common.file_io import PathManager
|
||
|
|
||
|
from detectron2 import model_zoo
|
||
|
from detectron2.checkpoint import DetectionCheckpointer
|
||
|
from detectron2.config import get_cfg
|
||
|
from detectron2.data import DatasetCatalog
|
||
|
from detectron2.modeling import build_model
|
||
|
from detectron2.utils.logger import setup_logger
|
||
|
|
||
|
|
||
|
@unittest.skipIf(os.environ.get("CIRCLECI"), "Require COCO data and model zoo.")
|
||
|
class TestCaffe2Export(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
setup_logger()
|
||
|
|
||
|
def _test_model(self, config_path, device="cpu"):
|
||
|
# requires extra dependencies
|
||
|
from detectron2.export import Caffe2Model, add_export_config, export_caffe2_model
|
||
|
|
||
|
cfg = get_cfg()
|
||
|
cfg.merge_from_file(model_zoo.get_config_file(config_path))
|
||
|
cfg = add_export_config(cfg)
|
||
|
cfg.MODEL.DEVICE = device
|
||
|
|
||
|
inputs = [{"image": self._get_test_image()}]
|
||
|
model = build_model(cfg)
|
||
|
DetectionCheckpointer(model).load(model_zoo.get_checkpoint_url(config_path))
|
||
|
c2_model = export_caffe2_model(cfg, model, copy.deepcopy(inputs))
|
||
|
|
||
|
with tempfile.TemporaryDirectory(prefix="detectron2_unittest") as d:
|
||
|
c2_model.save_protobuf(d)
|
||
|
c2_model.save_graph(os.path.join(d, "test.svg"), inputs=copy.deepcopy(inputs))
|
||
|
c2_model = Caffe2Model.load_protobuf(d)
|
||
|
c2_model(inputs)[0]["instances"]
|
||
|
|
||
|
def _get_test_image(self):
|
||
|
try:
|
||
|
file_name = DatasetCatalog.get("coco_2017_train")[0]["file_name"]
|
||
|
assert PathManager.exists(file_name)
|
||
|
except Exception:
|
||
|
self.skipTest("COCO dataset not available.")
|
||
|
|
||
|
with PathManager.open(file_name, "rb") as f:
|
||
|
buf = f.read()
|
||
|
img = cv2.imdecode(np.frombuffer(buf, dtype=np.uint8), cv2.IMREAD_COLOR)
|
||
|
assert img is not None, file_name
|
||
|
return torch.from_numpy(img.transpose(2, 0, 1))
|
||
|
|
||
|
def testMaskRCNN(self):
|
||
|
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
|
||
|
|
||
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
|
||
|
def testMaskRCNNGPU(self):
|
||
|
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", device="cuda")
|
||
|
|
||
|
def testRetinaNet(self):
|
||
|
self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml")
|
||
|
|
||
|
def testPanopticFPN(self):
|
||
|
self._test_model("COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml")
|