mirror of https://github.com/RE-OWOD/RE-OWOD
122 lines
3.2 KiB
YAML
122 lines
3.2 KiB
YAML
|
MODEL:
|
||
|
META_ARCHITECTURE: "GeneralizedRCNN"
|
||
|
BACKBONE:
|
||
|
NAME: "build_resnet_fpn_backbone"
|
||
|
RESNETS:
|
||
|
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||
|
FPN:
|
||
|
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||
|
ANCHOR_GENERATOR:
|
||
|
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||
|
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||
|
RPN:
|
||
|
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||
|
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||
|
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||
|
# Detectron1 uses 2000 proposals per-batch,
|
||
|
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||
|
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||
|
POST_NMS_TOPK_TRAIN: 1000
|
||
|
POST_NMS_TOPK_TEST: 1000
|
||
|
ROI_HEADS:
|
||
|
NAME: "StandardROIHeads"
|
||
|
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||
|
NUM_CLASSES: 1
|
||
|
ROI_BOX_HEAD:
|
||
|
NAME: "FastRCNNConvFCHead"
|
||
|
NUM_FC: 2
|
||
|
POOLER_RESOLUTION: 7
|
||
|
ROI_MASK_HEAD:
|
||
|
NAME: "MaskRCNNConvUpsampleHead"
|
||
|
NUM_CONV: 4
|
||
|
POOLER_RESOLUTION: 14
|
||
|
DATASETS:
|
||
|
TRAIN: ("base_coco_2017_train",)
|
||
|
TEST: ("base_coco_2017_val", "densepose_chimps")
|
||
|
CATEGORY_MAPS:
|
||
|
"base_coco_2017_train":
|
||
|
"16": 1 # bird -> person
|
||
|
"17": 1 # cat -> person
|
||
|
"18": 1 # dog -> person
|
||
|
"19": 1 # horse -> person
|
||
|
"20": 1 # sheep -> person
|
||
|
"21": 1 # cow -> person
|
||
|
"22": 1 # elephant -> person
|
||
|
"23": 1 # bear -> person
|
||
|
"24": 1 # zebra -> person
|
||
|
"25": 1 # girafe -> person
|
||
|
"base_coco_2017_val":
|
||
|
"16": 1 # bird -> person
|
||
|
"17": 1 # cat -> person
|
||
|
"18": 1 # dog -> person
|
||
|
"19": 1 # horse -> person
|
||
|
"20": 1 # sheep -> person
|
||
|
"21": 1 # cow -> person
|
||
|
"22": 1 # elephant -> person
|
||
|
"23": 1 # bear -> person
|
||
|
"24": 1 # zebra -> person
|
||
|
"25": 1 # girafe -> person
|
||
|
WHITELISTED_CATEGORIES:
|
||
|
"base_coco_2017_train":
|
||
|
- 1 # person
|
||
|
- 16 # bird
|
||
|
- 17 # cat
|
||
|
- 18 # dog
|
||
|
- 19 # horse
|
||
|
- 20 # sheep
|
||
|
- 21 # cow
|
||
|
- 22 # elephant
|
||
|
- 23 # bear
|
||
|
- 24 # zebra
|
||
|
- 25 # girafe
|
||
|
"base_coco_2017_val":
|
||
|
- 1 # person
|
||
|
- 16 # bird
|
||
|
- 17 # cat
|
||
|
- 18 # dog
|
||
|
- 19 # horse
|
||
|
- 20 # sheep
|
||
|
- 21 # cow
|
||
|
- 22 # elephant
|
||
|
- 23 # bear
|
||
|
- 24 # zebra
|
||
|
- 25 # girafe
|
||
|
BOOTSTRAP_DATASETS:
|
||
|
- DATASET: "chimpnsee"
|
||
|
RATIO: 1.0
|
||
|
IMAGE_LOADER:
|
||
|
TYPE: "video_keyframe"
|
||
|
SELECT:
|
||
|
STRATEGY: "random_k"
|
||
|
NUM_IMAGES: 4
|
||
|
TRANSFORM:
|
||
|
TYPE: "resize"
|
||
|
MIN_SIZE: 800
|
||
|
MAX_SIZE: 1333
|
||
|
BATCH_SIZE: 8
|
||
|
NUM_WORKERS: 1
|
||
|
INFERENCE:
|
||
|
INPUT_BATCH_SIZE: 1
|
||
|
OUTPUT_BATCH_SIZE: 1
|
||
|
DATA_SAMPLER:
|
||
|
# supported types:
|
||
|
# densepose_uniform
|
||
|
# densepose_UV_confidence
|
||
|
# densepose_fine_segm_confidence
|
||
|
# densepose_coarse_segm_confidence
|
||
|
TYPE: "densepose_uniform"
|
||
|
COUNT_PER_CLASS: 8
|
||
|
FILTER:
|
||
|
TYPE: "detection_score"
|
||
|
MIN_VALUE: 0.8
|
||
|
BOOTSTRAP_MODEL:
|
||
|
WEIGHTS: ""
|
||
|
SOLVER:
|
||
|
IMS_PER_BATCH: 16
|
||
|
BASE_LR: 0.02
|
||
|
STEPS: (60000, 80000)
|
||
|
MAX_ITER: 90000
|
||
|
INPUT:
|
||
|
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||
|
VERSION: 2
|