Add files via upload

main
RE-OWOD 2022-01-04 13:54:26 +08:00 committed by GitHub
parent 28e2825941
commit e60afe4993
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 1081 additions and 0 deletions

View File

@ -0,0 +1,7 @@
## Some scripts for developers to use, include:
- `run_instant_tests.sh`: run training for a few iterations.
- `run_inference_tests.sh`: run inference on a small dataset.
- `../../dev/linter.sh`: lint the codebase before commit
- `../../dev/parse_results.sh`: parse results from log file.

View File

@ -0,0 +1,33 @@
#!/bin/bash -e
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
BIN="python train_net.py"
OUTPUT="inference_test_output"
NUM_GPUS=2
IMS_PER_GPU=2
IMS_PER_BATCH=$(( NUM_GPUS * IMS_PER_GPU ))
CFG_LIST=( "${@:1}" )
if [ ${#CFG_LIST[@]} -eq 0 ]; then
CFG_LIST=( ./configs/quick_schedules/*inference_acc_test.yaml )
fi
echo "========================================================================"
echo "Configs to run:"
echo "${CFG_LIST[@]}"
echo "========================================================================"
for cfg in "${CFG_LIST[@]}"; do
echo "========================================================================"
echo "Running $cfg ..."
echo "========================================================================"
$BIN \
--eval-only \
--num-gpus $NUM_GPUS \
--config-file "$cfg" \
OUTPUT_DIR "$OUTPUT" \
SOLVER.IMS_PER_BATCH $IMS_PER_BATCH
rm -rf $OUTPUT
done

View File

@ -0,0 +1,28 @@
#!/bin/bash -e
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
BIN="python train_net.py"
OUTPUT="instant_test_output"
NUM_GPUS=2
SOLVER_IMS_PER_BATCH=$((NUM_GPUS * 2))
CFG_LIST=( "${@:1}" )
if [ ${#CFG_LIST[@]} -eq 0 ]; then
CFG_LIST=( ./configs/quick_schedules/*instant_test.yaml )
fi
echo "========================================================================"
echo "Configs to run:"
echo "${CFG_LIST[@]}"
echo "========================================================================"
for cfg in "${CFG_LIST[@]}"; do
echo "========================================================================"
echo "Running $cfg ..."
echo "========================================================================"
$BIN --num-gpus $NUM_GPUS --config-file "$cfg" \
SOLVER.IMS_PER_BATCH $SOLVER_IMS_PER_BATCH \
OUTPUT_DIR "$OUTPUT"
rm -rf "$OUTPUT"
done

View File

@ -0,0 +1,58 @@
# Getting Started with DensePose
## Inference with Pre-trained Models
1. Pick a model and its config file from [Model Zoo](MODEL_ZOO.md), for example [densepose_rcnn_R_50_FPN_s1x.yaml](../configs/densepose_rcnn_R_50_FPN_s1x.yaml)
2. Run the [Apply Net](TOOL_APPLY_NET.md) tool to visualize the results or save the to disk. For example, to use contour visualization for DensePose, one can run:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml densepose_rcnn_R_50_FPN_s1x.pkl image.jpg dp_contour,bbox --output image_densepose_contour.png
```
Please see [Apply Net](TOOL_APPLY_NET.md) for more details on the tool.
## Training
First, prepare the [dataset](http://densepose.org/#dataset) into the following structure under the directory you'll run training scripts:
<pre>
datasets/coco/
annotations/
densepose_{train,minival,valminusminival}2014.json
<a href="https://dl.fbaipublicfiles.com/detectron2/densepose/densepose_minival2014_100.json">densepose_minival2014_100.json </a> (optional, for testing only)
{train,val}2014/
# image files that are mentioned in the corresponding json
</pre>
To train a model one can use the [train_net.py](../train_net.py) script.
This script was used to train all DensePose models in [Model Zoo](MODEL_ZOO.md).
For example, to launch end-to-end DensePose-RCNN training with ResNet-50 FPN backbone
on 8 GPUs following the s1x schedule, one can run
```bash
python train_net.py --config-file configs/densepose_rcnn_R_50_FPN_s1x.yaml --num-gpus 8
```
The configs are made for 8-GPU training. To train on 1 GPU, one can apply the
[linear learning rate scaling rule](https://arxiv.org/abs/1706.02677):
```bash
python train_net.py --config-file configs/densepose_rcnn_R_50_FPN_s1x.yaml \
SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
```
## Evaluation
Model testing can be done in the same way as training, except for an additional flag `--eval-only` and
model location specification through `MODEL.WEIGHTS model.pth` in the command line
```bash
python train_net.py --config-file configs/densepose_rcnn_R_50_FPN_s1x.yaml \
--eval-only MODEL.WEIGHTS model.pth
```
## Tools
We provide tools which allow one to:
- easily view DensePose annotated data in a dataset;
- perform DensePose inference on a set of images;
- visualize DensePose model results;
`query_db` is a tool to print or visualize DensePose data in a dataset.
Please refer to [Query DB](TOOL_QUERY_DB.md) for more details on this tool
`apply_net` is a tool to print or visualize DensePose results.
Please refer to [Apply Net](TOOL_APPLY_NET.md) for more details on this tool

View File

@ -0,0 +1,277 @@
# Model Zoo and Baselines
# Introduction
We provide baselines trained with Detectron2 DensePose. The corresponding
configuration files can be found in the [configs](../configs) directory.
All models were trained on COCO `train2014` + `valminusminival2014` and
evaluated on COCO `minival2014`. For the details on common settings in which
baselines were trained, please check [Detectron 2 Model Zoo](../../../MODEL_ZOO.md).
## License
All models available for download through this document are licensed under the
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/)
## COCO DensePose Baselines with DensePose-RCNN
### Legacy Models
Baselines trained using schedules from [Güler et al, 2018](https://arxiv.org/pdf/1802.00434.pdf)
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_s1x_legacy -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml">R_50_FPN_s1x_legacy</a></td>
<td align="center">s1x</td>
<td align="center">0.307</td>
<td align="center">0.051</td>
<td align="center">3.2</td>
<td align="center">58.1</td>
<td align="center">52.1</td>
<td align="center">54.9</td>
<td align="center">164832157</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x_legacy/164832157/model_final_d366fa.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x_legacy/164832157/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_s1x_legacy -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml">R_101_FPN_s1x_legacy</a></td>
<td align="center">s1x</td>
<td align="center">0.390</td>
<td align="center">0.063</td>
<td align="center">4.3</td>
<td align="center">59.5</td>
<td align="center">53.2</td>
<td align="center">56.1</td>
<td align="center">164832182</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x_legacy/164832182/model_final_10af0e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x_legacy/164832182/metrics.json">metrics</a></td>
</tr>
</tbody></table>
### Improved Baselines, Original Fully Convolutional Haad
These models use an improved training schedule and Panoptic FPN head from [Kirillov et al, 2019](https://arxiv.org/abs/1901.02446).
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_s1x.yaml">R_50_FPN_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.359</td>
<td align="center">0.066</td>
<td align="center">4.5</td>
<td align="center">61.2</td>
<td align="center">63.7</td>
<td align="center">65.3</td>
<td align="center">165712039</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_s1x.yaml">R_101_FPN_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.428</td>
<td align="center">0.079</td>
<td align="center">5.8</td>
<td align="center">62.3</td>
<td align="center">64.5</td>
<td align="center">66.4</td>
<td align="center">165712084</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x/165712084/model_final_c6ab63.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_s1x/165712084/metrics.json">metrics</a></td>
</tr>
</tbody></table>
### Improved Baselines, DeepLabV3 Head
These models use an improved training schedule, Panoptic FPN head from [Kirillov et al, 2019](https://arxiv.org/abs/1901.02446) and DeepLabV3 head from [Chen et al, 2017](https://arxiv.org/abs/1706.05587).
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_DL_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_s1x.yaml">R_50_FPN_DL_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.392</td>
<td align="center">0.070</td>
<td align="center">6.7</td>
<td align="center">61.1</td>
<td align="center">65.6</td>
<td align="center">66.8</td>
<td align="center">165712097</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_s1x/165712097/model_final_0ed407.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_s1x/165712097/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml">R_101_FPN_DL_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.478</td>
<td align="center">0.083</td>
<td align="center">7.0</td>
<td align="center">62.3</td>
<td align="center">66.3</td>
<td align="center">67.7</td>
<td align="center">165712116</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_s1x/165712116/model_final_844d15.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_s1x/165712116/metrics.json">metrics</a></td>
</tr>
</tbody></table>
### Baselines with Confidence Estimation
These models perform additional estimation of confidence in regressed UV coodrinates, along the lines of [Neverova et al., 2019](https://papers.nips.cc/paper/8378-correlated-uncertainty-for-learning-dense-correspondences-from-noisy-labels).
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Name</th>
<th valign="bottom">lr<br/>sched</th>
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
<th valign="bottom">train<br/>mem<br/>(GB)</th>
<th valign="bottom">box<br/>AP</th>
<th valign="bottom">dp. AP<br/>GPS</th>
<th valign="bottom">dp. AP<br/>GPSm</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<!-- ROW: densepose_rcnn_R_50_FPN_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC1_s1x.yaml">R_50_FPN_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.353</td>
<td align="center">0.064</td>
<td align="center">4.6</td>
<td align="center">60.5</td>
<td align="center">64.2</td>
<td align="center">65.6</td>
<td align="center">173862049</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1_s1x/173862049/model_final_289019.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC1_s1x/173862049/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_WC2_s1x.yaml">R_50_FPN_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.364</td>
<td align="center">0.066</td>
<td align="center">4.8</td>
<td align="center">60.7</td>
<td align="center">64.2</td>
<td align="center">65.7</td>
<td align="center">173861455</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2_s1x/173861455/model_final_3abe14.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_WC2_s1x/173861455/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml">R_50_FPN_DL_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.397</td>
<td align="center">0.068</td>
<td align="center">6.7</td>
<td align="center">61.1</td>
<td align="center">65.8</td>
<td align="center">67.1</td>
<td align="center">173067973</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1_s1x/173067973/model_final_b1e525.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC1_s1x/173067973/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_50_FPN_DL_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml">R_50_FPN_DL_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.410</td>
<td align="center">0.070</td>
<td align="center">6.8</td>
<td align="center">60.8</td>
<td align="center">65.6</td>
<td align="center">66.7</td>
<td align="center">173859335</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2_s1x/173859335/model_final_60fed4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_DL_WC2_s1x/173859335/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml">R_101_FPN_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.435</td>
<td align="center">0.076</td>
<td align="center">5.7</td>
<td align="center">62.5</td>
<td align="center">64.9</td>
<td align="center">66.5</td>
<td align="center">171402969</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1_s1x/171402969/model_final_9e47f0.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC1_s1x/171402969/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml">R_101_FPN_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.450</td>
<td align="center">0.078</td>
<td align="center">5.7</td>
<td align="center">62.3</td>
<td align="center">64.8</td>
<td align="center">66.6</td>
<td align="center">173860702</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2_s1x/173860702/model_final_5ea023.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_WC2_s1x/173860702/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC1_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml">R_101_FPN_DL_WC1_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.479</td>
<td align="center">0.081</td>
<td align="center">7.9</td>
<td align="center">62.0</td>
<td align="center">66.2</td>
<td align="center">67.4</td>
<td align="center">173858525</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1_s1x/173858525/model_final_f359f3.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC1_s1x/173858525/metrics.json">metrics</a></td>
</tr>
<!-- ROW: densepose_rcnn_R_101_FPN_DL_WC2_s1x -->
<tr><td align="left"><a href="../configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml">R_101_FPN_DL_WC2_s1x</a></td>
<td align="center">s1x</td>
<td align="center">0.491</td>
<td align="center">0.082</td>
<td align="center">7.6</td>
<td align="center">61.7</td>
<td align="center">65.9</td>
<td align="center">67.3</td>
<td align="center">173294801</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2_s1x/173294801/model_final_6e1ed1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_101_FPN_DL_WC2_s1x/173294801/metrics.json">metrics</a></td>
</tr>
</tbody></table>
## Old Baselines
It is still possible to use some baselines from [DensePose 1](https://github.com/facebookresearch/DensePose).
Below are evaluation metrics for the baselines recomputed in the current framework:
| Model | bbox AP | AP | AP50 | AP75 | APm |APl |
|-----|-----|-----|--- |--- |--- |--- |
| [`ResNet50_FPN_s1x-e2e`](https://dl.fbaipublicfiles.com/densepose/DensePose_ResNet50_FPN_s1x-e2e.pkl) | 54.673 | 48.894 | 84.963 | 50.717 | 43.132 | 50.433 |
| [`ResNet101_FPN_s1x-e2e`](https://dl.fbaipublicfiles.com/densepose/DensePose_ResNet101_FPN_s1x-e2e.pkl) | 56.032 | 51.088 | 86.250 | 55.057 | 46.542 | 52.563 |
Note: these scores are close, but not strictly equal to the ones reported in the [DensePose 1 Model Zoo](https://github.com/facebookresearch/DensePose/blob/master/MODEL_ZOO.md),
which is due to small incompatibilities between the frameworks.

View File

@ -0,0 +1,131 @@
# Apply Net
`apply_net` is a tool to print or visualize DensePose results on a set of images.
It has two modes: `dump` to save DensePose model results to a pickle file
and `show` to visualize them on images.
## Dump Mode
The general command form is:
```bash
python apply_net.py dump [-h] [-v] [--output <dump_file>] <config> <model> <input>
```
There are three mandatory arguments:
- `<config>`, configuration file for a given model;
- `<model>`, model file with trained parameters
- `<input>`, input image file name, pattern or folder
One can additionally provide `--output` argument to define the output file name,
which defaults to `output.pkl`.
Examples:
1. Dump results of a DensePose model with ResNet-50 FPN backbone for images
in a folder `images` to file `dump.pkl`:
```bash
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl images --output dump.pkl -v
```
2. Dump results of a DensePose model with ResNet-50 FPN backbone for images
with file name matching a pattern `image*.jpg` to file `results.pkl`:
```bash
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl "image*.jpg" --output results.pkl -v
```
If you want to load the pickle file generated by the above command:
```
# make sure DensePose is in your PYTHONPATH, or use the following line to add it:
sys.path.append("/your_detectron2_path/detectron2_repo/projects/DensePose/")
f = open('/your_result_path/results.pkl', 'rb')
data = pickle.load(f)
```
The file `results.pkl` contains the list of results per image, for each image the result is a dictionary:
```
data: [{'file_name': '/your_path/image1.jpg',
'scores': tensor([0.9884]),
'pred_boxes_XYXY': tensor([[ 69.6114, 0.0000, 706.9797, 706.0000]]),
'pred_densepose': <densepose.structures.DensePoseResult object at 0x7f791b312470>},
{'file_name': '/your_path/image2.jpg',
'scores': tensor([0.9999, 0.5373, 0.3991]),
'pred_boxes_XYXY': tensor([[ 59.5734, 7.7535, 579.9311, 932.3619],
[612.9418, 686.1254, 612.9999, 704.6053],
[164.5081, 407.4034, 598.3944, 920.4266]]),
'pred_densepose': <densepose.structures.DensePoseResult object at 0x7f7071229be0>}]
```
We can use the following code, to parse the outputs of the first
detected instance on the first image.
```
from densepose.data.structures import DensePoseResult
img_id, instance_id = 0, 0 # Look at the first image and the first detected instance
bbox_xyxy = data[img_id]['pred_boxes_XYXY'][instance_id]
result_encoded = data[img_id]['pred_densepose'].results[instance_id]
iuv_arr = DensePoseResult.decode_png_data(*result_encoded)
```
The array `bbox_xyxy` contains (x0, y0, x1, y1) of the bounding box.
The shape of `iuv_arr` is `[3, H, W]`, where (H, W) is the shape of the bounding box.
- `iuv_arr[0,:,:]`: The patch index of image points, indicating which of the 24 surface patches the point is on.
- `iuv_arr[1,:,:]`: The U-coordinate value of image points.
- `iuv_arr[2,:,:]`: The V-coordinate value of image points.
## Visualization Mode
The general command form is:
```bash
python apply_net.py show [-h] [-v] [--min_score <score>] [--nms_thresh <threshold>] [--output <image_file>] <config> <model> <input> <visualizations>
```
There are four mandatory arguments:
- `<config>`, configuration file for a given model;
- `<model>`, model file with trained parameters
- `<input>`, input image file name, pattern or folder
- `<visualizations>`, visualizations specifier; currently available visualizations are:
* `bbox` - bounding boxes of detected persons;
* `dp_segm` - segmentation masks for detected persons;
* `dp_u` - each body part is colored according to the estimated values of the
U coordinate in part parameterization;
* `dp_v` - each body part is colored according to the estimated values of the
V coordinate in part parameterization;
* `dp_contour` - plots contours with color-coded U and V coordinates
One can additionally provide the following optional arguments:
- `--min_score` to only show detections with sufficient scores that are not lower than provided value
- `--nms_thresh` to additionally apply non-maximum suppression to detections at a given threshold
- `--output` to define visualization file name template, which defaults to `output.png`.
To distinguish output file names for different images, the tool appends 1-based entry index,
e.g. output.0001.png, output.0002.png, etc...
The following examples show how to output results of a DensePose model
with ResNet-50 FPN backbone using different visualizations for image `image.jpg`:
1. Show bounding box and segmentation:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_segm -v
```
![Bounding Box + Segmentation Visualization](images/res_bbox_dp_segm.jpg)
2. Show bounding box and estimated U coordinates for body parts:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_u -v
```
![Bounding Box + U Coordinate Visualization](images/res_bbox_dp_u.jpg)
3. Show bounding box and estimated V coordinates for body parts:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg bbox,dp_v -v
```
![Bounding Box + V Coordinate Visualization](images/res_bbox_dp_v.jpg)
4. Show bounding box and estimated U and V coordinates via contour plots:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml DensePose_ResNet50_FPN_s1x-e2e.pkl image.jpg dp_contour,bbox -v
```
![Bounding Box + Contour Visualization](images/res_bbox_dp_contour.jpg)

View File

@ -0,0 +1,105 @@
# Query Dataset
`query_db` is a tool to print or visualize DensePose data from a dataset.
It has two modes: `print` and `show` to output dataset entries to standard
output or to visualize them on images.
## Print Mode
The general command form is:
```bash
python query_db.py print [-h] [-v] [--max-entries N] <dataset> <selector>
```
There are two mandatory arguments:
- `<dataset>`, DensePose dataset specification, from which to select
the entries (e.g. `densepose_coco_2014_train`).
- `<selector>`, dataset entry selector which can be a single specification,
or a comma-separated list of specifications of the form
`field[:type]=value` for exact match with the value
or `field[:type]=min-max` for a range of values
One can additionally limit the maximum number of entries to output
by providing `--max-entries` argument.
Examples:
1. Output at most 10 first entries from the `densepose_coco_2014_train` dataset:
```bash
python query_db.py print densepose_coco_2014_train \* --max-entries 10 -v
```
2. Output all entries with `file_name` equal to `COCO_train2014_000000000036.jpg`:
```bash
python query_db.py print densepose_coco_2014_train file_name=COCO_train2014_000000000036.jpg -v
```
3. Output all entries with `image_id` between 36 and 156:
```bash
python query_db.py print densepose_coco_2014_train image_id:int=36-156 -v
```
## Visualization Mode
The general command form is:
```bash
python query_db.py show [-h] [-v] [--max-entries N] [--output <image_file>] <dataset> <selector> <visualizations>
```
There are three mandatory arguments:
- `<dataset>`, DensePose dataset specification, from which to select
the entries (e.g. `densepose_coco_2014_train`).
- `<selector>`, dataset entry selector which can be a single specification,
or a comma-separated list of specifications of the form
`field[:type]=value` for exact match with the value
or `field[:type]=min-max` for a range of values
- `<visualizations>`, visualizations specifier; currently available visualizations are:
* `bbox` - bounding boxes of annotated persons;
* `dp_i` - annotated points colored according to the containing part;
* `dp_pts` - annotated points in green color;
* `dp_segm` - segmentation masks for annotated persons;
* `dp_u` - annotated points colored according to their U coordinate in part parameterization;
* `dp_v` - annotated points colored according to their V coordinate in part parameterization;
One can additionally provide one of the two optional arguments:
- `--max_entries` to limit the maximum number of entries to visualize
- `--output` to provide visualization file name template, which defaults
to `output.png`. To distinguish file names for different dataset
entries, the tool appends 1-based entry index to the output file name,
e.g. output.0001.png, output.0002.png, etc.
The following examples show how to output different visualizations for image with `id = 322`
from `densepose_coco_2014_train` dataset:
1. Show bounding box and segmentation:
```bash
python query_db.py show densepose_coco_2014_train image_id:int=322 bbox,dp_segm -v
```
![Bounding Box + Segmentation Visualization](images/vis_bbox_dp_segm.jpg)
2. Show bounding box and points colored according to the containing part:
```bash
python query_db.py show densepose_coco_2014_train image_id:int=322 bbox,dp_i -v
```
![Bounding Box + Point Label Visualization](images/vis_bbox_dp_i.jpg)
3. Show bounding box and annotated points in green color:
```bash
python query_db.py show densepose_coco_2014_train image_id:int=322 bbox,dp_segm -v
```
![Bounding Box + Point Visualization](images/vis_bbox_dp_pts.jpg)
4. Show bounding box and annotated points colored according to their U coordinate in part parameterization:
```bash
python query_db.py show densepose_coco_2014_train image_id:int=322 bbox,dp_u -v
```
![Bounding Box + Point U Visualization](images/vis_bbox_dp_u.jpg)
5. Show bounding box and annotated points colored according to their V coordinate in part parameterization:
```bash
python query_db.py show densepose_coco_2014_train image_id:int=322 bbox,dp_v -v
```
![Bounding Box + Point V Visualization](images/vis_bbox_dp_v.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

View File

@ -0,0 +1,124 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import os
import torch
from detectron2.config import get_cfg
from detectron2.engine import default_setup
from detectron2.modeling import build_model
from densepose import add_densepose_config
_BASE_CONFIG_DIR = "configs"
_EVOLUTION_CONFIG_SUB_DIR = "evolution"
_HRNET_CONFIG_SUB_DIR = "HRNet"
_QUICK_SCHEDULES_CONFIG_SUB_DIR = "quick_schedules"
_BASE_CONFIG_FILE_PREFIX = "Base-"
_CONFIG_FILE_EXT = ".yaml"
def _get_base_config_dir():
"""
Return the base directory for configurations
"""
return os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", _BASE_CONFIG_DIR)
def _get_evolution_config_dir():
"""
Return the base directory for evolution configurations
"""
return os.path.join(_get_base_config_dir(), _EVOLUTION_CONFIG_SUB_DIR)
def _get_hrnet_config_dir():
"""
Return the base directory for HRNet configurations
"""
return os.path.join(_get_base_config_dir(), _HRNET_CONFIG_SUB_DIR)
def _get_quick_schedules_config_dir():
"""
Return the base directory for quick schedules configurations
"""
return os.path.join(_get_base_config_dir(), _QUICK_SCHEDULES_CONFIG_SUB_DIR)
def _collect_config_files(config_dir):
"""
Collect all configuration files (i.e. densepose_*.yaml) directly in the specified directory
"""
start = _get_base_config_dir()
results = []
for entry in os.listdir(config_dir):
path = os.path.join(config_dir, entry)
if not os.path.isfile(path):
continue
_, ext = os.path.splitext(entry)
if ext != _CONFIG_FILE_EXT:
continue
if entry.startswith(_BASE_CONFIG_FILE_PREFIX):
continue
config_file = os.path.relpath(path, start)
results.append(config_file)
return results
def get_config_files():
"""
Get all the configuration files (relative to the base configuration directory)
"""
return _collect_config_files(_get_base_config_dir())
def get_evolution_config_files():
"""
Get all the evolution configuration files (relative to the base configuration directory)
"""
return _collect_config_files(_get_evolution_config_dir())
def get_hrnet_config_files():
"""
Get all the HRNet configuration files (relative to the base configuration directory)
"""
return _collect_config_files(_get_hrnet_config_dir())
def get_quick_schedules_config_files():
"""
Get all the quick schedules configuration files (relative to the base configuration directory)
"""
return _collect_config_files(_get_quick_schedules_config_dir())
def _get_model_config(config_file):
"""
Load and return the configuration from the specified file (relative to the base configuration
directory)
"""
cfg = get_cfg()
add_densepose_config(cfg)
path = os.path.join(_get_base_config_dir(), config_file)
cfg.merge_from_file(path)
if not torch.cuda.is_available():
cfg.MODEL_DEVICE = "cpu"
return cfg
def get_model(config_file):
"""
Get the model from the specified file (relative to the base configuration directory)
"""
cfg = _get_model_config(config_file)
return build_model(cfg)
def setup(config_file):
"""
Setup the configuration from the specified file (relative to the base configuration directory)
"""
cfg = _get_model_config(config_file)
cfg.freeze()
default_setup(cfg, {})

View File

@ -0,0 +1,46 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import random
import unittest
from typing import Any, Iterable, Iterator, Tuple
from densepose.data import CombinedDataLoader
def _grouper(iterable: Iterable[Any], n: int, fillvalue=None) -> Iterator[Tuple[Any]]:
"""
Group elements of an iterable by chunks of size `n`, e.g.
grouper(range(9), 4) ->
(0, 1, 2, 3), (4, 5, 6, 7), (8, None, None, None)
"""
it = iter(iterable)
while True:
values = []
for _ in range(n):
try:
value = next(it)
except StopIteration:
values.extend([fillvalue] * (n - len(values)))
yield tuple(values)
return
values.append(value)
yield tuple(values)
class TestCombinedDataLoader(unittest.TestCase):
def test_combine_loaders_1(self):
loader1 = _grouper([f"1_{i}" for i in range(10)], 2)
loader2 = _grouper([f"2_{i}" for i in range(11)], 3)
batch_size = 4
ratios = (0.1, 0.9)
random.seed(43)
combined = CombinedDataLoader((loader1, loader2), batch_size, ratios)
BATCHES_GT = [
["1_0", "1_1", "2_0", "2_1"],
["2_2", "2_3", "2_4", "2_5"],
["1_2", "1_3", "2_6", "2_7"],
["2_8", "2_9", "2_10", None],
]
for i, batch in enumerate(combined):
self.assertEqual(len(batch), batch_size)
self.assertEqual(batch, BATCHES_GT[i])

View File

@ -0,0 +1,60 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import random
import unittest
from densepose.data.video import FirstKFramesSelector, LastKFramesSelector, RandomKFramesSelector
class TestFrameSelector(unittest.TestCase):
def test_frame_selector_random_k_1(self):
_SEED = 43
_K = 4
random.seed(_SEED)
selector = RandomKFramesSelector(_K)
frame_tss = list(range(0, 20, 2))
_SELECTED_GT = [0, 8, 4, 6]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)
def test_frame_selector_random_k_2(self):
_SEED = 43
_K = 10
random.seed(_SEED)
selector = RandomKFramesSelector(_K)
frame_tss = list(range(0, 6, 2))
_SELECTED_GT = [0, 2, 4]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)
def test_frame_selector_first_k_1(self):
_K = 4
selector = FirstKFramesSelector(_K)
frame_tss = list(range(0, 20, 2))
_SELECTED_GT = frame_tss[:_K]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)
def test_frame_selector_first_k_2(self):
_K = 10
selector = FirstKFramesSelector(_K)
frame_tss = list(range(0, 6, 2))
_SELECTED_GT = frame_tss[:_K]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)
def test_frame_selector_last_k_1(self):
_K = 4
selector = LastKFramesSelector(_K)
frame_tss = list(range(0, 20, 2))
_SELECTED_GT = frame_tss[-_K:]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)
def test_frame_selector_last_k_2(self):
_K = 10
selector = LastKFramesSelector(_K)
frame_tss = list(range(0, 6, 2))
_SELECTED_GT = frame_tss[-_K:]
selected = selector(frame_tss)
self.assertEqual(_SELECTED_GT, selected)

View File

@ -0,0 +1,16 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import unittest
import torch
from densepose.data.transform import ImageResizeTransform
class TestImageResizeTransform(unittest.TestCase):
def test_image_resize_1(self):
images_batch = torch.ones((3, 100, 100, 3), dtype=torch.uint8) * 100
transform = ImageResizeTransform()
images_transformed = transform(images_batch)
IMAGES_GT = torch.ones((3, 3, 800, 800), dtype=torch.float) * 100
self.assertEqual(images_transformed.size(), IMAGES_GT.size())
self.assertAlmostEqual(torch.abs(IMAGES_GT - images_transformed).max().item(), 0.0)

View File

@ -0,0 +1,43 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import unittest
import torch
from detectron2.structures import BitMasks, Boxes, Instances
from .common import get_model
# TODO(plabatut): Modularize detectron2 tests and re-use
def make_model_inputs(image, instances=None):
if instances is None:
return {"image": image}
return {"image": image, "instances": instances}
def make_empty_instances(h, w):
instances = Instances((h, w))
instances.gt_boxes = Boxes(torch.rand(0, 4))
instances.gt_classes = torch.tensor([]).to(dtype=torch.int64)
instances.gt_masks = BitMasks(torch.rand(0, h, w))
return instances
class ModelE2ETest(unittest.TestCase):
CONFIG_PATH = ""
def setUp(self):
self.model = get_model(self.CONFIG_PATH)
def _test_eval(self, sizes):
inputs = [make_model_inputs(torch.rand(3, size[0], size[1])) for size in sizes]
self.model.eval()
self.model(inputs)
class DensePoseRCNNE2ETest(ModelE2ETest):
CONFIG_PATH = "densepose_rcnn_R_101_FPN_s1x.yaml"
def test_empty_data(self):
self._test_eval([(200, 250), (200, 249)])

View File

@ -0,0 +1,36 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import unittest
from .common import (
get_config_files,
get_evolution_config_files,
get_hrnet_config_files,
get_quick_schedules_config_files,
setup,
)
class TestSetup(unittest.TestCase):
def _test_setup(self, config_file):
setup(config_file)
def test_setup_configs(self):
config_files = get_config_files()
for config_file in config_files:
self._test_setup(config_file)
def test_setup_evolution_configs(self):
config_files = get_evolution_config_files()
for config_file in config_files:
self._test_setup(config_file)
def test_setup_hrnet_configs(self):
config_files = get_hrnet_config_files()
for config_file in config_files:
self._test_setup(config_file)
def test_setup_quick_schedules_configs(self):
config_files = get_quick_schedules_config_files()
for config_file in config_files:
self._test_setup(config_file)

View File

@ -0,0 +1,25 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import unittest
from densepose.data.structures import normalized_coords_transform
class TestStructures(unittest.TestCase):
def test_normalized_coords_transform(self):
bbox = (32, 24, 288, 216)
x0, y0, w, h = bbox
xmin, ymin, xmax, ymax = x0, y0, x0 + w, y0 + h
f = normalized_coords_transform(*bbox)
# Top-left
expected_p, actual_p = (-1, -1), f((xmin, ymin))
self.assertEqual(expected_p, actual_p)
# Top-right
expected_p, actual_p = (1, -1), f((xmax, ymin))
self.assertEqual(expected_p, actual_p)
# Bottom-left
expected_p, actual_p = (-1, 1), f((xmin, ymax))
self.assertEqual(expected_p, actual_p)
# Bottom-right
expected_p, actual_p = (1, 1), f((xmax, ymax))
self.assertEqual(expected_p, actual_p)

View File

@ -0,0 +1,92 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import contextlib
import os
import random
import tempfile
import unittest
import torch
import torchvision.io as io
from densepose.data.transform import ImageResizeTransform
from densepose.data.video import RandomKFramesSelector, VideoKeyframeDataset
try:
import av
except ImportError:
av = None
# copied from torchvision test/test_io.py
def _create_video_frames(num_frames, height, width):
y, x = torch.meshgrid(torch.linspace(-2, 2, height), torch.linspace(-2, 2, width))
data = []
for i in range(num_frames):
xc = float(i) / num_frames
yc = 1 - float(i) / (2 * num_frames)
d = torch.exp(-((x - xc) ** 2 + (y - yc) ** 2) / 2) * 255
data.append(d.unsqueeze(2).repeat(1, 1, 3).byte())
return torch.stack(data, 0)
# adapted from torchvision test/test_io.py
@contextlib.contextmanager
def temp_video(num_frames, height, width, fps, lossless=False, video_codec=None, options=None):
if lossless:
if video_codec is not None:
raise ValueError("video_codec can't be specified together with lossless")
if options is not None:
raise ValueError("options can't be specified together with lossless")
video_codec = "libx264rgb"
options = {"crf": "0"}
if video_codec is None:
video_codec = "libx264"
if options is None:
options = {}
data = _create_video_frames(num_frames, height, width)
with tempfile.NamedTemporaryFile(suffix=".mp4") as f:
f.close()
io.write_video(f.name, data, fps=fps, video_codec=video_codec, options=options)
yield f.name, data
os.unlink(f.name)
@unittest.skipIf(av is None, "PyAV unavailable")
class TestVideoKeyframeDataset(unittest.TestCase):
def test_read_keyframes_all(self):
with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data):
video_list = [fname]
dataset = VideoKeyframeDataset(video_list)
self.assertEqual(len(dataset), 1)
data1 = dataset[0]
self.assertEqual(data1.shape, torch.Size((5, 300, 300, 3)))
self.assertEqual(data1.dtype, torch.uint8)
return
self.assertTrue(False)
def test_read_keyframes_with_selector(self):
with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data):
video_list = [fname]
random.seed(0)
frame_selector = RandomKFramesSelector(3)
dataset = VideoKeyframeDataset(video_list, frame_selector)
self.assertEqual(len(dataset), 1)
data1 = dataset[0]
self.assertEqual(data1.shape, torch.Size((3, 300, 300, 3)))
self.assertEqual(data1.dtype, torch.uint8)
return
self.assertTrue(False)
def test_read_keyframes_with_selector_with_transform(self):
with temp_video(60, 300, 300, 5, video_codec="mpeg4") as (fname, data):
video_list = [fname]
random.seed(0)
frame_selector = RandomKFramesSelector(1)
transform = ImageResizeTransform()
dataset = VideoKeyframeDataset(video_list, frame_selector, transform)
data1 = dataset[0]
self.assertEqual(len(dataset), 1)
self.assertEqual(data1.shape, torch.Size((1, 3, 800, 800)))
self.assertEqual(data1.dtype, torch.float32)
return
self.assertTrue(False)