# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import itertools import numpy as np import os import xml.etree.ElementTree as ET from typing import List, Tuple, Union from fvcore.common.file_io import PathManager from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.structures import BoxMode __all__ = ["load_voc_coco_instances", "register_voc_style_coco"] VOC_CLASS_NAMES = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] VOC_CLASS_NAMES_COCOFIED = [ "airplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "dining table", "dog", "horse", "motorcycle", "person", "potted plant", "sheep", "couch", "train", "tv" ] T2_CLASS_NAMES = [ "truck", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "microwave", "oven", "toaster", "sink", "refrigerator" ] T3_CLASS_NAMES = [ "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake" ] T4_CLASS_NAMES = [ "bed", "toilet", "laptop", "mouse", "remote", "keyboard", "cell phone", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "wine glass", "cup", "fork", "knife", "spoon", "bowl" ] UNK_CLASS = ["unknown"] # INCR_CLASS_NAMES = itertools.chain(VOC_CLASS_NAMES, T2_CLASS_NAMES, T3_CLASS_NAMES, T4_CLASS_NAMES, UNK_CLASS) INCR_CLASS_NAMES = itertools.chain(VOC_CLASS_NAMES, UNK_CLASS) INCR_CLASS_NAMES = tuple(INCR_CLASS_NAMES) INCR_CLASS_NAMES_2 = tuple(itertools.chain(VOC_CLASS_NAMES_COCOFIED, UNK_CLASS)) def load_voc_coco_instances(dirname: str, split: str, class_names: Union[List[str], Tuple[str, ...]]): """ Load Pascal VOC detection annotations to Detectron2 format. Args: dirname: Contain "Annotations", "ImageSets", "JPEGImages" split (str): one of "train", "test", "val", "trainval": t1_train, t1_test class_names: list or tuple of class names """ with PathManager.open(os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f: fileids = np.loadtxt(f, dtype=np.str) known_class_list = None if 't2' in split: known_class_list = T2_CLASS_NAMES elif 't3' in split: known_class_list = T3_CLASS_NAMES elif 't4' in split: known_class_list = T4_CLASS_NAMES unknown_class_list = tuple(itertools.chain(T2_CLASS_NAMES, T3_CLASS_NAMES, T4_CLASS_NAMES)) # Needs to read many small annotation files. Makes sense at local annotation_dirname = PathManager.get_local_path(os.path.join(dirname, "Annotations/")) dicts = [] for fileid in fileids: anno_file = os.path.join(annotation_dirname, fileid + ".xml") jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ".jpg") with PathManager.open(anno_file) as f: tree = ET.parse(f) r = { "file_name": jpeg_file, "image_id": fileid, "height": int(tree.findall("./size/height")[0].text), "width": int(tree.findall("./size/width")[0].text), } instances = [] for obj in tree.findall("object"): cls_name = obj.find("name").text cls = cls_name if cls_name in unknown_class_list: cls = "unknown" # if cls_name not in known_class_list: # continue # # if 'unk' in split: # cls = "unknown" # else: # cls = cls_name # We include "difficult" samples in training. # Based on limited experiments, they don't hurt accuracy. # difficult = int(obj.find("difficult").text) # if difficult == 1: # continue bbox = obj.find("bndbox") bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]] # Original annotations are integers in the range [1, W or H] # Assuming they mean 1-based pixel indices (inclusive), # a box with annotation (xmin=1, xmax=W) covers the whole image. # In coordinate space this is represented by (xmin=0, xmax=W) bbox[0] -= 1.0 bbox[1] -= 1.0 try: instances.append( {"category_id": INCR_CLASS_NAMES_2.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS} ) except: print(cls) print(class_names) print(unknown_class_list) r["annotations"] = instances dicts.append(r) return dicts def register_voc_style_coco(name, dirname, split, year, class_names=INCR_CLASS_NAMES): DatasetCatalog.register(name, lambda: load_voc_coco_instances(dirname, split, class_names)) MetadataCatalog.get(name).set( thing_classes=list(class_names), dirname=dirname, year=year, split=split )