mirror of https://github.com/RE-OWOD/RE-OWOD
222 lines
8.9 KiB
Python
222 lines
8.9 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import math
|
|
from typing import Tuple
|
|
import torch
|
|
|
|
# Value for clamping large dw and dh predictions. The heuristic is that we clamp
|
|
# such that dw and dh are no larger than what would transform a 16px box into a
|
|
# 1000px box (based on a small anchor, 16px, and a typical image size, 1000px).
|
|
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
|
|
|
|
|
|
__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated"]
|
|
|
|
|
|
@torch.jit.script
|
|
class Box2BoxTransform(object):
|
|
"""
|
|
The box-to-box transform defined in R-CNN. The transformation is parameterized
|
|
by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height
|
|
by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height).
|
|
"""
|
|
|
|
def __init__(
|
|
self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP
|
|
):
|
|
"""
|
|
Args:
|
|
weights (4-element tuple): Scaling factors that are applied to the
|
|
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
|
|
such that the deltas have unit variance; now they are treated as
|
|
hyperparameters of the system.
|
|
scale_clamp (float): When predicting deltas, the predicted box scaling
|
|
factors (dw and dh) are clamped such that they are <= scale_clamp.
|
|
"""
|
|
self.weights = weights
|
|
self.scale_clamp = scale_clamp
|
|
|
|
def get_deltas(self, src_boxes, target_boxes):
|
|
"""
|
|
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
|
|
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
|
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
|
|
any delta is too large and is clamped).
|
|
|
|
Args:
|
|
src_boxes (Tensor): source boxes, e.g., object proposals
|
|
target_boxes (Tensor): target of the transformation, e.g., ground-truth
|
|
boxes.
|
|
"""
|
|
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
|
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
|
|
|
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
|
|
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
|
|
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
|
|
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
|
|
|
|
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
|
|
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
|
|
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
|
|
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
|
|
|
|
wx, wy, ww, wh = self.weights
|
|
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
|
|
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
|
|
dw = ww * torch.log(target_widths / src_widths)
|
|
dh = wh * torch.log(target_heights / src_heights)
|
|
|
|
deltas = torch.stack((dx, dy, dw, dh), dim=1)
|
|
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
|
|
return deltas
|
|
|
|
def apply_deltas(self, deltas, boxes):
|
|
"""
|
|
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
|
|
|
|
Args:
|
|
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
|
|
deltas[i] represents k potentially different class-specific
|
|
box transformations for the single box boxes[i].
|
|
boxes (Tensor): boxes to transform, of shape (N, 4)
|
|
"""
|
|
boxes = boxes.to(deltas.dtype)
|
|
|
|
widths = boxes[:, 2] - boxes[:, 0]
|
|
heights = boxes[:, 3] - boxes[:, 1]
|
|
ctr_x = boxes[:, 0] + 0.5 * widths
|
|
ctr_y = boxes[:, 1] + 0.5 * heights
|
|
|
|
wx, wy, ww, wh = self.weights
|
|
dx = deltas[:, 0::4] / wx
|
|
dy = deltas[:, 1::4] / wy
|
|
dw = deltas[:, 2::4] / ww
|
|
dh = deltas[:, 3::4] / wh
|
|
|
|
# Prevent sending too large values into torch.exp()
|
|
dw = torch.clamp(dw, max=self.scale_clamp)
|
|
dh = torch.clamp(dh, max=self.scale_clamp)
|
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
|
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
|
|
pred_w = torch.exp(dw) * widths[:, None]
|
|
pred_h = torch.exp(dh) * heights[:, None]
|
|
|
|
pred_boxes = torch.zeros_like(deltas)
|
|
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
|
|
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
|
|
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
|
|
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
|
|
return pred_boxes
|
|
|
|
|
|
@torch.jit.script
|
|
class Box2BoxTransformRotated(object):
|
|
"""
|
|
The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized
|
|
by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height
|
|
by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height),
|
|
and rotate a box's angle by da (radians).
|
|
Note: angles of deltas are in radians while angles of boxes are in degrees.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
weights: Tuple[float, float, float, float, float],
|
|
scale_clamp: float = _DEFAULT_SCALE_CLAMP,
|
|
):
|
|
"""
|
|
Args:
|
|
weights (5-element tuple): Scaling factors that are applied to the
|
|
(dx, dy, dw, dh, da) deltas. These are treated as
|
|
hyperparameters of the system.
|
|
scale_clamp (float): When predicting deltas, the predicted box scaling
|
|
factors (dw and dh) are clamped such that they are <= scale_clamp.
|
|
"""
|
|
self.weights = weights
|
|
self.scale_clamp = scale_clamp
|
|
|
|
def get_deltas(self, src_boxes, target_boxes):
|
|
"""
|
|
Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used
|
|
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
|
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
|
|
any delta is too large and is clamped).
|
|
|
|
Args:
|
|
src_boxes (Tensor): Nx5 source boxes, e.g., object proposals
|
|
target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth
|
|
boxes.
|
|
"""
|
|
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
|
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
|
|
|
src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1)
|
|
|
|
target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind(
|
|
target_boxes, dim=1
|
|
)
|
|
|
|
wx, wy, ww, wh, wa = self.weights
|
|
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
|
|
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
|
|
dw = ww * torch.log(target_widths / src_widths)
|
|
dh = wh * torch.log(target_heights / src_heights)
|
|
# Angles of deltas are in radians while angles of boxes are in degrees.
|
|
# the conversion to radians serve as a way to normalize the values
|
|
da = target_angles - src_angles
|
|
da = (da + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
|
|
da *= wa * math.pi / 180.0
|
|
|
|
deltas = torch.stack((dx, dy, dw, dh, da), dim=1)
|
|
assert (
|
|
(src_widths > 0).all().item()
|
|
), "Input boxes to Box2BoxTransformRotated are not valid!"
|
|
return deltas
|
|
|
|
def apply_deltas(self, deltas, boxes):
|
|
"""
|
|
Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`.
|
|
|
|
Args:
|
|
deltas (Tensor): transformation deltas of shape (N, k*5).
|
|
deltas[i] represents box transformation for the single box boxes[i].
|
|
boxes (Tensor): boxes to transform, of shape (N, 5)
|
|
"""
|
|
assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5
|
|
|
|
boxes = boxes.to(deltas.dtype).unsqueeze(2)
|
|
|
|
ctr_x = boxes[:, 0]
|
|
ctr_y = boxes[:, 1]
|
|
widths = boxes[:, 2]
|
|
heights = boxes[:, 3]
|
|
angles = boxes[:, 4]
|
|
|
|
wx, wy, ww, wh, wa = self.weights
|
|
|
|
dx = deltas[:, 0::5] / wx
|
|
dy = deltas[:, 1::5] / wy
|
|
dw = deltas[:, 2::5] / ww
|
|
dh = deltas[:, 3::5] / wh
|
|
da = deltas[:, 4::5] / wa
|
|
|
|
# Prevent sending too large values into torch.exp()
|
|
dw = torch.clamp(dw, max=self.scale_clamp)
|
|
dh = torch.clamp(dh, max=self.scale_clamp)
|
|
|
|
pred_boxes = torch.zeros_like(deltas)
|
|
pred_boxes[:, 0::5] = dx * widths + ctr_x # x_ctr
|
|
pred_boxes[:, 1::5] = dy * heights + ctr_y # y_ctr
|
|
pred_boxes[:, 2::5] = torch.exp(dw) * widths # width
|
|
pred_boxes[:, 3::5] = torch.exp(dh) * heights # height
|
|
|
|
# Following original RRPN implementation,
|
|
# angles of deltas are in radians while angles of boxes are in degrees.
|
|
pred_angle = da * 180.0 / math.pi + angles
|
|
pred_angle = (pred_angle + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
|
|
|
|
pred_boxes[:, 4::5] = pred_angle
|
|
|
|
return pred_boxes
|