mirror of https://github.com/RE-OWOD/RE-OWOD
75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
|
|
"""
|
|
DensePose Training Script.
|
|
|
|
This script is similar to the training script in detectron2/tools.
|
|
|
|
It is an example of how a user might use detectron2 for a new project.
|
|
"""
|
|
|
|
from fvcore.common.file_io import PathManager
|
|
|
|
import detectron2.utils.comm as comm
|
|
from detectron2.config import get_cfg
|
|
from detectron2.engine import default_argument_parser, default_setup, hooks, launch
|
|
from detectron2.evaluation import verify_results
|
|
from detectron2.utils.logger import setup_logger
|
|
|
|
from densepose import add_densepose_config
|
|
from densepose.engine import Trainer
|
|
from densepose.modeling.densepose_checkpoint import DensePoseCheckpointer
|
|
|
|
|
|
def setup(args):
|
|
cfg = get_cfg()
|
|
add_densepose_config(cfg)
|
|
cfg.merge_from_file(args.config_file)
|
|
cfg.merge_from_list(args.opts)
|
|
cfg.freeze()
|
|
default_setup(cfg, args)
|
|
# Setup logger for "densepose" module
|
|
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose")
|
|
return cfg
|
|
|
|
|
|
def main(args):
|
|
cfg = setup(args)
|
|
# disable strict kwargs checking: allow one to specify path handle
|
|
# hints through kwargs, like timeout in DP evaluation
|
|
PathManager.set_strict_kwargs_checking(False)
|
|
|
|
if args.eval_only:
|
|
model = Trainer.build_model(cfg)
|
|
DensePoseCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
|
cfg.MODEL.WEIGHTS, resume=args.resume
|
|
)
|
|
res = Trainer.test(cfg, model)
|
|
if cfg.TEST.AUG.ENABLED:
|
|
res.update(Trainer.test_with_TTA(cfg, model))
|
|
if comm.is_main_process():
|
|
verify_results(cfg, res)
|
|
return res
|
|
|
|
trainer = Trainer(cfg)
|
|
trainer.resume_or_load(resume=args.resume)
|
|
if cfg.TEST.AUG.ENABLED:
|
|
trainer.register_hooks(
|
|
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
|
|
)
|
|
return trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = default_argument_parser().parse_args()
|
|
print("Command Line Args:", args)
|
|
launch(
|
|
main,
|
|
args.num_gpus,
|
|
num_machines=args.num_machines,
|
|
machine_rank=args.machine_rank,
|
|
dist_url=args.dist_url,
|
|
args=(args,),
|
|
)
|