mirror of https://github.com/RE-OWOD/RE-OWOD
162 lines
8.0 KiB
Python
162 lines
8.0 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
# Reference: https://github.com/bowenc0221/panoptic-deeplab/blob/aa934324b55a34ce95fea143aea1cb7a6dbe04bd/segmentation/data/transforms/target_transforms.py#L11 # noqa
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
class PanopticDeepLabTargetGenerator(object):
|
|
"""
|
|
Generates training targets for Panoptic-DeepLab.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
ignore_label,
|
|
thing_ids,
|
|
sigma=8,
|
|
ignore_stuff_in_offset=False,
|
|
small_instance_area=0,
|
|
small_instance_weight=1,
|
|
ignore_crowd_in_semantic=False,
|
|
):
|
|
"""
|
|
Args:
|
|
ignore_label: Integer, the ignore label for semantic segmentation.
|
|
thing_ids: Set, a set of ids from contiguous category ids belonging
|
|
to thing categories.
|
|
sigma: the sigma for Gaussian kernel.
|
|
ignore_stuff_in_offset: Boolean, whether to ignore stuff region when
|
|
training the offset branch.
|
|
small_instance_area: Integer, indicates largest area for small instances.
|
|
small_instance_weight: Integer, indicates semantic loss weights for
|
|
small instances.
|
|
ignore_crowd_in_semantic: Boolean, whether to ignore crowd region in
|
|
semantic segmentation branch, crowd region is ignored in the original
|
|
TensorFlow implementation.
|
|
"""
|
|
self.ignore_label = ignore_label
|
|
self.thing_ids = set(thing_ids)
|
|
self.ignore_stuff_in_offset = ignore_stuff_in_offset
|
|
self.small_instance_area = small_instance_area
|
|
self.small_instance_weight = small_instance_weight
|
|
self.ignore_crowd_in_semantic = ignore_crowd_in_semantic
|
|
|
|
# Generate the default Gaussian image for each center
|
|
self.sigma = sigma
|
|
size = 6 * sigma + 3
|
|
x = np.arange(0, size, 1, float)
|
|
y = x[:, np.newaxis]
|
|
x0, y0 = 3 * sigma + 1, 3 * sigma + 1
|
|
self.g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
|
|
|
|
def __call__(self, panoptic, segments_info):
|
|
"""Generates the training target.
|
|
reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py # noqa
|
|
reference: https://github.com/facebookresearch/detectron2/blob/master/datasets/prepare_panoptic_fpn.py#L18 # noqa
|
|
Args:
|
|
panoptic: numpy.array, panoptic label, we assume it is already
|
|
converted from rgb image by panopticapi.utils.rgb2id.
|
|
segments_info: List, a list of dictionary containing information of
|
|
every segment, it has fields:
|
|
- id: panoptic id, this is the compact id that encode both
|
|
category and instance id by:
|
|
category_id * label_divisor + instance_id.
|
|
- category_id: category id, like semantic segmentation, it is
|
|
the class id for each pixel. It is expected to by contiguous
|
|
category id, conveted when registering panoptic datasets.
|
|
- iscrowd: crowd region.
|
|
Returns:
|
|
A dictionary with fields:
|
|
- sem_seg: Tensor, semantic label, shape=(H, W).
|
|
- center: Tensor, center heatmap, shape=(H, W).
|
|
- center_points: List, center coordinates, with tuple
|
|
(y-coord, x-coord).
|
|
- offset: Tensor, offset, shape=(2, H, W), first dim is
|
|
(offset_y, offset_x).
|
|
- sem_seg_weights: Tensor, loss weight for semantic prediction,
|
|
shape=(H, W).
|
|
- center_weights: Tensor, ignore region of center prediction,
|
|
shape=(H, W), used as weights for center regression 0 is
|
|
ignore, 1 is has instance. Multiply this mask to loss.
|
|
- offset_weights: Tensor, ignore region of offset prediction,
|
|
shape=(H, W), used as weights for offset regression 0 is
|
|
ignore, 1 is has instance. Multiply this mask to loss.
|
|
"""
|
|
height, width = panoptic.shape[0], panoptic.shape[1]
|
|
semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_label
|
|
center = np.zeros((height, width), dtype=np.float32)
|
|
center_pts = []
|
|
offset = np.zeros((2, height, width), dtype=np.float32)
|
|
y_coord, x_coord = np.meshgrid(
|
|
np.arange(height, dtype=np.float32), np.arange(width, dtype=np.float32), indexing="ij"
|
|
)
|
|
# Generate pixel-wise loss weights
|
|
semantic_weights = np.ones_like(panoptic, dtype=np.uint8)
|
|
# 0: ignore, 1: has instance
|
|
# three conditions for a region to be ignored for instance branches:
|
|
# (1) It is labeled as `ignore_label`
|
|
# (2) It is crowd region (iscrowd=1)
|
|
# (3) (Optional) It is stuff region (for offset branch)
|
|
center_weights = np.zeros_like(panoptic, dtype=np.uint8)
|
|
offset_weights = np.zeros_like(panoptic, dtype=np.uint8)
|
|
for seg in segments_info:
|
|
cat_id = seg["category_id"]
|
|
if not (self.ignore_crowd_in_semantic and seg["iscrowd"]):
|
|
semantic[panoptic == seg["id"]] = cat_id
|
|
if not seg["iscrowd"]:
|
|
# Ignored regions are not in `segments_info`.
|
|
# Handle crowd region.
|
|
center_weights[panoptic == seg["id"]] = 1
|
|
if not self.ignore_stuff_in_offset or cat_id in self.thing_ids:
|
|
offset_weights[panoptic == seg["id"]] = 1
|
|
if cat_id in self.thing_ids:
|
|
# find instance center
|
|
mask_index = np.where(panoptic == seg["id"])
|
|
if len(mask_index[0]) == 0:
|
|
# the instance is completely cropped
|
|
continue
|
|
|
|
# Find instance area
|
|
ins_area = len(mask_index[0])
|
|
if ins_area < self.small_instance_area:
|
|
semantic_weights[panoptic == seg["id"]] = self.small_instance_weight
|
|
|
|
center_y, center_x = np.mean(mask_index[0]), np.mean(mask_index[1])
|
|
center_pts.append([center_y, center_x])
|
|
|
|
# generate center heatmap
|
|
y, x = int(round(center_y)), int(round(center_x))
|
|
sigma = self.sigma
|
|
# upper left
|
|
ul = int(np.round(x - 3 * sigma - 1)), int(np.round(y - 3 * sigma - 1))
|
|
# bottom right
|
|
br = int(np.round(x + 3 * sigma + 2)), int(np.round(y + 3 * sigma + 2))
|
|
|
|
# start and end indices in default Gaussian image
|
|
gaussian_x0, gaussian_x1 = max(0, -ul[0]), min(br[0], width) - ul[0]
|
|
gaussian_y0, gaussian_y1 = max(0, -ul[1]), min(br[1], height) - ul[1]
|
|
|
|
# start and end indices in center heatmap image
|
|
center_x0, center_x1 = max(0, ul[0]), min(br[0], width)
|
|
center_y0, center_y1 = max(0, ul[1]), min(br[1], height)
|
|
center[center_y0:center_y1, center_x0:center_x1] = np.maximum(
|
|
center[center_y0:center_y1, center_x0:center_x1],
|
|
self.g[gaussian_y0:gaussian_y1, gaussian_x0:gaussian_x1],
|
|
)
|
|
|
|
# generate offset (2, h, w) -> (y-dir, x-dir)
|
|
offset[0][mask_index] = center_y - y_coord[mask_index]
|
|
offset[1][mask_index] = center_x - x_coord[mask_index]
|
|
|
|
center_weights = center_weights[None]
|
|
offset_weights = offset_weights[None]
|
|
return dict(
|
|
sem_seg=torch.as_tensor(semantic.astype("long")),
|
|
center=torch.as_tensor(center.astype(np.float32)),
|
|
center_points=center_pts,
|
|
offset=torch.as_tensor(offset.astype(np.float32)),
|
|
sem_seg_weights=torch.as_tensor(semantic_weights.astype(np.float32)),
|
|
center_weights=torch.as_tensor(center_weights.astype(np.float32)),
|
|
offset_weights=torch.as_tensor(offset_weights.astype(np.float32)),
|
|
)
|