A pytorch implementation of the "Selective Convolutional Descriptor Aggregation" algorithm
Go to file
CaoGang2018 4dcc749d98 men 2020-05-31 17:54:13 +08:00
.vscode .. 2020-05-31 10:27:56 +08:00
data init 2020-05-29 18:05:22 +08:00
util men 2020-05-31 17:54:13 +08:00
README.md men 2020-05-31 17:54:13 +08:00
SCDA.py cc for GMP 2020-05-31 10:30:19 +08:00
main.py test code 2020-05-31 10:27:09 +08:00
requirements.txt updata requirements 2020-05-29 19:32:34 +08:00

README.md

SCDA_pytorch

A pytorch implementation of the "Selective Convolutional Descriptor Aggregation" algorithm

NOTE

cpu-only version

no in [1]

train_data_L31a(i,:) = train_data_L31a(i,:) ./ norm(train_data_L31a(i,:));

largestConnectComponent

Details

install requirements

  pip install -r requirements.txt;

On CUB and split dataset in CUB_200.py.

random split CUB-200-2011 results:

top1 top5
CUB 0.546 0.794

[1] Wei X S , Luo J H , Wu J , et al. Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(6):2868-2881.