from torch.utils.data import DataLoader from data.CUB_200 import get_dataset, input_transform, input_transform2 import SCDA from torchvision import models import pandas as pd import torch import torch.nn.functional as F import csv import numpy as np from util.model import pool_model import random def retrieve(q, data, num=5): distances = np.sum(np.square((data - q)), axis=-1) # distances = np.sum(cosine_similarity(q, data)), axis=-1) indices = distances.argsort(axis=0)[:num] return indices def write_csv(results,file_name): import csv with open(file_name,'w') as f: writer = csv.writer(f) writer.writerow(['id','label']) writer.writerows(results) net1 = models.vgg16(pretrained=True).features[:-3] net2 = models.vgg16(pretrained=True).features dataset_or = get_dataset() # dataset_filp = get_dataset(transform=input_transform2) data_or = DataLoader(dataset_or, batch_size=10, shuffle=True,num_workers=0) # data_flip = DataLoader(dataset_filp, batch_size=20, shuffle=True,num_workers=0) net1.eval() net2.eval() result = [] label_re = [] max_ave_pool = pool_model() # out = open('feat.csv', 'a', newline='') # csv_write = csv.writer(out, dialect='excel') # csv_write.writerow(['features', 'label']) for ii, (img1, img2, label) in enumerate(data_or): # if ii == 2: # exit() input1 = img1 feat_re = net1(input1) feat_po = net2(input1) input2 = img2 feat_flip_re = net1(input2) feat_flip_po = net2(input2) m, _, h1, w1 = feat_po.shape m, _, h2, w2 = feat_re.shape label = label.detach().numpy() f_po = torch.zeros(feat_po.shape) f_re = torch.zeros(feat_re.shape) filp_po = torch.zeros(feat_flip_po.shape) filp_re = torch.zeros(feat_flip_re.shape) cc8 = np.zeros((m, h1, w1)) #31 cc7 = np.zeros((m, h1, w1)) # 31 cc6 = np.zeros((m, h2, w2))# 28 cc5 = np.zeros((m, h2, w2))# 28 for i in range(m): # f_re[i] = SCDA.select_aggregate(feat_re[i].detach().numpy()) f_po[i] = SCDA.select_aggregate(feat_po[i])[0] # 31a cc2 = SCDA.select_aggregate(feat_po[i])[1] cc8[i] = cc2 f_re[i] = SCDA.select_aggregate_and(feat_re[i], cc2)[0] # 28a cc3 = SCDA.select_aggregate_and(feat_re[i], cc2)[1] cc6[i] = cc3 filp_po[i] = SCDA.select_aggregate(feat_flip_po[i])[0] # 31b cc2_f = SCDA.select_aggregate(feat_flip_po[i])[1] cc7[i] = cc2_f filp_re[i] = SCDA.select_aggregate_and(feat_flip_re[i], cc2_f)[0] cc3_f = SCDA.select_aggregate_and(feat_flip_re[i], cc2_f)[1] # 28b cc5[i] = cc3_f # print(f.shape) # l = int(lable[i]) # csv_write.writerow([f, l]) # del f, l # result.append((f, l)) # print(f_po.shape) l31a = max_ave_pool(f_po, cc8) # exit() l28a = max_ave_pool(f_re, cc6) l31b = max_ave_pool(filp_po, cc7) l28b = max_ave_pool(filp_re, cc5) # print(f_po.reshape(1, -1)) # print(f_re) # print(filp_po) # print(filp_re) feat = torch.cat((l31a, 0.5*l28a, l31b, 0.5*l28b), dim=1).reshape(m, -1).detach().numpy() # print(feat.shape) for i in range(m): # print(feat[i]) # print(feat[i].reshape(1,-1).shape) result.append(feat[i].tolist()) label_re.append(int(label[i])) # exit() # az = feat[i].tolist() # print(az) # csv_write.writerow([az, int(label[i])]) print('batch {}/{} complete'.format(ii+1, len(data_or))) print("test...") feats = np.vstack(result) # print(feats.shape) label = np.vstack(label_re) x = [int(i) for i in range(feats.shape[0])] random.shuffle(x) feats = feats[x] labels = label[x] # labels = [i[0] for i in label] test_data = feats[:int(0.5*len(labels))] train_data = feats[int(0.5*len(labels)):] test_label = labels[:int(0.5*len(labels))] train_label = labels[int(0.5*len(labels)):] top1 = 0 top5 = 0 # ap = 0.0 for i in range(len(test_label)): # print(test_data[i].shape) # exit() inds = retrieve(test_data[i].reshape(1,-1), train_data, num=len(train_data)) # print(inds.tolist()) # print(inds) labels = train_label[inds] if labels[0] == test_label[i]: top1 +=1 if test_label[i] in labels[:5]: top5 +=1 # ap += compute_ap(inds.tolist(), get_gt(test_label[i], train_labels)) print("Query[%d / %d] complete: top1: %.4f, top5: %.4f"%(i, len(test_label), top1/(i+1), top5/(i+1))) print("top1 acc: %.4f, top5 acc %.4f"%(top1/len(test_label), top5/len(test_label))) # avg.train_data_L31a # maxi.train_data_L31a # ratio.*avg.train_data_L28a # ratio.*maxi.train_data_L28a # avg.train_data_L31b # maxi.train_data_L31b # ratio.*avg.train_data_L28b # ratio.*maxi.train_data_L28b