A pytorch implementation of the "Selective Convolutional Descriptor Aggregation" algorithm
Go to file
dependabot[bot] 9780079ab1
Bump numpy from 1.17.3 to 1.22.0
Bumps [numpy](https://github.com/numpy/numpy) from 1.17.3 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.17.3...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-22 02:09:49 +00:00
.vscode .. 2020-05-31 10:27:56 +08:00
data init 2020-05-29 18:05:22 +08:00
util men 2020-05-31 17:54:13 +08:00
README.md men 2020-05-31 17:54:13 +08:00
SCDA.py cc for GMP 2020-05-31 10:30:19 +08:00
main.py test code 2020-05-31 10:27:09 +08:00
requirements.txt Bump numpy from 1.17.3 to 1.22.0 2022-06-22 02:09:49 +00:00

README.md

SCDA_pytorch

A pytorch implementation of the "Selective Convolutional Descriptor Aggregation" algorithm

NOTE

cpu-only version

no in [1]

train_data_L31a(i,:) = train_data_L31a(i,:) ./ norm(train_data_L31a(i,:));

largestConnectComponent

Details

install requirements

  pip install -r requirements.txt;

On CUB and split dataset in CUB_200.py.

random split CUB-200-2011 results:

top1 top5
CUB 0.546 0.794

[1] Wei X S , Luo J H , Wu J , et al. Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(6):2868-2881.