mirror of
https://github.com/CaoGang2018/SCDA_pytorch.git
synced 2025-06-03 14:59:31 +08:00
157 lines
4.7 KiB
Python
157 lines
4.7 KiB
Python
from torch.utils.data import DataLoader
|
|
from data.CUB_200 import get_dataset, input_transform, input_transform2
|
|
import SCDA
|
|
from torchvision import models
|
|
import pandas as pd
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import csv
|
|
import numpy as np
|
|
from util.model import pool_model
|
|
import random
|
|
|
|
|
|
def retrieve(q, data, num=5):
|
|
distances = np.sum(np.square((data - q)), axis=-1)
|
|
# distances = np.sum(cosine_similarity(q, data)), axis=-1)
|
|
indices = distances.argsort(axis=0)[:num]
|
|
return indices
|
|
|
|
|
|
def write_csv(results,file_name):
|
|
import csv
|
|
with open(file_name,'w') as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(['id','label'])
|
|
writer.writerows(results)
|
|
|
|
|
|
net1 = models.vgg16(pretrained=True).features[:-3]
|
|
net2 = models.vgg16(pretrained=True).features
|
|
dataset_or = get_dataset()
|
|
# dataset_filp = get_dataset(transform=input_transform2)
|
|
data_or = DataLoader(dataset_or, batch_size=10, shuffle=True,num_workers=0)
|
|
# data_flip = DataLoader(dataset_filp, batch_size=20, shuffle=True,num_workers=0)
|
|
net1.eval()
|
|
net2.eval()
|
|
result = []
|
|
label_re = []
|
|
max_ave_pool = pool_model()
|
|
# out = open('feat.csv', 'a', newline='')
|
|
# csv_write = csv.writer(out, dialect='excel')
|
|
# csv_write.writerow(['features', 'label'])
|
|
for ii, (img1, img2, label) in enumerate(data_or):
|
|
# if ii == 2:
|
|
# exit()
|
|
input1 = img1
|
|
feat_re = net1(input1)
|
|
feat_po = net2(input1)
|
|
input2 = img2
|
|
feat_flip_re = net1(input2)
|
|
feat_flip_po = net2(input2)
|
|
m, _, h1, w1 = feat_po.shape
|
|
m, _, h2, w2 = feat_re.shape
|
|
label = label.detach().numpy()
|
|
f_po = torch.zeros(feat_po.shape)
|
|
f_re = torch.zeros(feat_re.shape)
|
|
filp_po = torch.zeros(feat_flip_po.shape)
|
|
filp_re = torch.zeros(feat_flip_re.shape)
|
|
cc8 = np.zeros((m, h1, w1)) #31
|
|
cc7 = np.zeros((m, h1, w1)) # 31
|
|
cc6 = np.zeros((m, h2, w2))# 28
|
|
cc5 = np.zeros((m, h2, w2))# 28
|
|
|
|
|
|
for i in range(m):
|
|
# f_re[i] = SCDA.select_aggregate(feat_re[i].detach().numpy())
|
|
f_po[i] = SCDA.select_aggregate(feat_po[i])[0] # 31a
|
|
cc2 = SCDA.select_aggregate(feat_po[i])[1]
|
|
cc8[i] = cc2
|
|
f_re[i] = SCDA.select_aggregate_and(feat_re[i], cc2)[0] # 28a
|
|
cc3 = SCDA.select_aggregate_and(feat_re[i], cc2)[1]
|
|
cc6[i] = cc3
|
|
|
|
|
|
filp_po[i] = SCDA.select_aggregate(feat_flip_po[i])[0] # 31b
|
|
cc2_f = SCDA.select_aggregate(feat_flip_po[i])[1]
|
|
cc7[i] = cc2_f
|
|
filp_re[i] = SCDA.select_aggregate_and(feat_flip_re[i], cc2_f)[0]
|
|
cc3_f = SCDA.select_aggregate_and(feat_flip_re[i], cc2_f)[1] # 28b
|
|
cc5[i] = cc3_f
|
|
# print(f.shape)
|
|
# l = int(lable[i])
|
|
# csv_write.writerow([f, l])
|
|
# del f, l
|
|
# result.append((f, l))
|
|
# print(f_po.shape)
|
|
l31a = max_ave_pool(f_po, cc8)
|
|
# exit()
|
|
l28a = max_ave_pool(f_re, cc6)
|
|
|
|
l31b = max_ave_pool(filp_po, cc7)
|
|
l28b = max_ave_pool(filp_re, cc5)
|
|
# print(f_po.reshape(1, -1))
|
|
# print(f_re)
|
|
# print(filp_po)
|
|
# print(filp_re)
|
|
|
|
feat = torch.cat((l31a, 0.5*l28a, l31b, 0.5*l28b), dim=1).reshape(m, -1).detach().numpy()
|
|
# print(feat.shape)
|
|
|
|
for i in range(m):
|
|
# print(feat[i])
|
|
# print(feat[i].reshape(1,-1).shape)
|
|
result.append(feat[i].tolist())
|
|
label_re.append(int(label[i]))
|
|
# exit()
|
|
|
|
# az = feat[i].tolist()
|
|
# print(az)
|
|
# csv_write.writerow([az, int(label[i])])
|
|
|
|
print('batch {}/{} complete'.format(ii+1, len(data_or)))
|
|
|
|
print("test...")
|
|
|
|
feats = np.vstack(result)
|
|
# print(feats.shape)
|
|
label = np.vstack(label_re)
|
|
|
|
x = [int(i) for i in range(feats.shape[0])]
|
|
random.shuffle(x)
|
|
feats = feats[x]
|
|
labels = label[x]
|
|
# labels = [i[0] for i in label]
|
|
test_data = feats[:int(0.5*len(labels))]
|
|
train_data = feats[int(0.5*len(labels)):]
|
|
test_label = labels[:int(0.5*len(labels))]
|
|
train_label = labels[int(0.5*len(labels)):]
|
|
|
|
top1 = 0
|
|
top5 = 0
|
|
# ap = 0.0
|
|
for i in range(len(test_label)):
|
|
# print(test_data[i].shape)
|
|
# exit()
|
|
inds = retrieve(test_data[i].reshape(1,-1), train_data, num=len(train_data))
|
|
# print(inds.tolist())
|
|
# print(inds)
|
|
labels = train_label[inds]
|
|
if labels[0] == test_label[i]:
|
|
top1 +=1
|
|
if test_label[i] in labels[:5]:
|
|
top5 +=1
|
|
# ap += compute_ap(inds.tolist(), get_gt(test_label[i], train_labels))
|
|
print("Query[%d / %d] complete: top1: %.4f, top5: %.4f"%(i, len(test_label), top1/(i+1), top5/(i+1)))
|
|
|
|
print("top1 acc: %.4f, top5 acc %.4f"%(top1/len(test_label), top5/len(test_label)))
|
|
|
|
# avg.train_data_L31a
|
|
# maxi.train_data_L31a
|
|
# ratio.*avg.train_data_L28a
|
|
# ratio.*maxi.train_data_L28a
|
|
# avg.train_data_L31b
|
|
# maxi.train_data_L31b
|
|
# ratio.*avg.train_data_L28b
|
|
# ratio.*maxi.train_data_L28b
|