ScaledYOLOv4/models/common.py

628 lines
22 KiB
Python
Raw Normal View History

2020-11-16 17:08:31 +08:00
# This file contains modules common to various models
import math
import torch
import torch.nn as nn
from mish_cuda import MishCuda as Mish
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
def DWConv(c1, c2, k=1, s=1, act=True):
# Depthwise convolution
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = Mish() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
return self.act(self.conv(x))
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = Mish()
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
class BottleneckCSP2(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(BottleneckCSP2, self).__init__()
c_ = int(c2) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv3 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_)
self.act = Mish()
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
def forward(self, x):
x1 = self.cv1(x)
y1 = self.m(x1)
y2 = self.cv2(x1)
return self.cv3(self.act(self.bn(torch.cat((y1, y2), dim=1))))
class VoVCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(VoVCSP, self).__init__()
c_ = int(c2) # hidden channels
self.cv1 = Conv(c1//2, c_//2, 3, 1)
self.cv2 = Conv(c_//2, c_//2, 3, 1)
self.cv3 = Conv(c_, c2, 1, 1)
def forward(self, x):
_, x1 = x.chunk(2, dim=1)
x1 = self.cv1(x1)
x2 = self.cv2(x1)
return self.cv3(torch.cat((x1,x2), dim=1))
class SPP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, c1, c2, k=(5, 9, 13)):
super(SPP, self).__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
def forward(self, x):
x = self.cv1(x)
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class SPPCSP(nn.Module):
# CSP SPP https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
super(SPPCSP, self).__init__()
c_ = int(2 * c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = Conv(c_, c_, 3, 1)
self.cv4 = Conv(c_, c_, 1, 1)
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
self.cv5 = Conv(4 * c_, c_, 1, 1)
self.cv6 = Conv(c_, c_, 3, 1)
self.bn = nn.BatchNorm2d(2 * c_)
self.act = Mish()
self.cv7 = Conv(2 * c_, c2, 1, 1)
def forward(self, x):
x1 = self.cv4(self.cv3(self.cv1(x)))
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
y2 = self.cv2(x)
return self.cv7(self.act(self.bn(torch.cat((y1, y2), dim=1))))
class MP(nn.Module):
# Spatial pyramid pooling layer used in YOLOv3-SPP
def __init__(self, k=2):
super(MP, self).__init__()
self.m = nn.MaxPool2d(kernel_size=k, stride=k)
def forward(self, x):
return self.m(x)
class Focus(nn.Module):
# Focus wh information into c-space
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super(Concat, self).__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class Flatten(nn.Module):
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class Classify(nn.Module):
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
super(Classify, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1)
self.flat = Flatten()
def forward(self, x):
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
return self.flat(self.conv(z)) # flatten to x(b,c2)
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import collections
class CombConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel=1, stride=1, dropout=0.1, bias=False):
super().__init__()
self.add_module('layer1',ConvLayer(in_channels, out_channels, kernel))
self.add_module('layer2',DWConvLayer(out_channels, out_channels, stride=stride))
def forward(self, x):
return super().forward(x)
class DWConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, stride=1, bias=False):
super().__init__()
out_ch = out_channels
groups = in_channels
kernel = 3
#print(kernel, 'x', kernel, 'x', out_channels, 'x', out_channels, 'DepthWise')
self.add_module('dwconv', nn.Conv2d(groups, groups, kernel_size=3,
stride=stride, padding=1, groups=groups, bias=bias))
self.add_module('norm', nn.BatchNorm2d(groups))
def forward(self, x):
return super().forward(x)
class ConvLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel=3, stride=1, dropout=0.1, bias=False):
super().__init__()
out_ch = out_channels
groups = 1
#print(kernel, 'x', kernel, 'x', in_channels, 'x', out_channels)
self.add_module('conv', nn.Conv2d(in_channels, out_ch, kernel_size=kernel,
stride=stride, padding=kernel//2, groups=groups, bias=bias))
self.add_module('norm', nn.BatchNorm2d(out_ch))
self.add_module('relu', nn.ReLU6(True))
def forward(self, x):
return super().forward(x)
class HarDBlock(nn.Module):
def get_link(self, layer, base_ch, growth_rate, grmul):
if layer == 0:
return base_ch, 0, []
out_channels = growth_rate
link = []
for i in range(10):
dv = 2 ** i
if layer % dv == 0:
k = layer - dv
link.append(k)
if i > 0:
out_channels *= grmul
out_channels = int(int(out_channels + 1) / 2) * 2
in_channels = 0
for i in link:
ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul)
in_channels += ch
return out_channels, in_channels, link
def get_out_ch(self):
return self.out_channels
def __init__(self, in_channels, growth_rate, grmul, n_layers, keepBase=False, residual_out=False, dwconv=False):
super().__init__()
self.keepBase = keepBase
self.links = []
layers_ = []
self.out_channels = 0 # if upsample else in_channels
for i in range(n_layers):
outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
self.links.append(link)
use_relu = residual_out
if dwconv:
layers_.append(CombConvLayer(inch, outch))
else:
layers_.append(Conv(inch, outch, k=3))
if (i % 2 == 0) or (i == n_layers - 1):
self.out_channels += outch
#print("Blk out =",self.out_channels)
self.layers = nn.ModuleList(layers_)
def forward(self, x):
layers_ = [x]
for layer in range(len(self.layers)):
link = self.links[layer]
tin = []
for i in link:
tin.append(layers_[i])
if len(tin) > 1:
x = torch.cat(tin, 1)
else:
x = tin[0]
out = self.layers[layer](x)
layers_.append(out)
t = len(layers_)
out_ = []
for i in range(t):
if (i == 0 and self.keepBase) or (i == t-1) or (i%2 == 1):
out_.append(layers_[i])
out = torch.cat(out_, 1)
return out
class BRLayer(nn.Sequential):
def __init__(self, in_channels):
super().__init__()
self.add_module('norm', nn.BatchNorm2d(in_channels))
self.add_module('relu', nn.ReLU(True))
def forward(self, x):
return super().forward(x)
class HarDBlock2(nn.Module):
def get_link(self, layer, base_ch, growth_rate, grmul):
if layer == 0:
return base_ch, 0, []
out_channels = growth_rate
link = []
for i in range(10):
dv = 2 ** i
if layer % dv == 0:
k = layer - dv
link.insert(0, k)
if i > 0:
out_channels *= grmul
out_channels = int(int(out_channels + 1) / 2) * 2
in_channels = 0
for i in link:
ch,_,_ = self.get_link(i, base_ch, growth_rate, grmul)
in_channels += ch
return out_channels, in_channels, link
def get_out_ch(self):
return self.out_channels
def __init__(self, in_channels, growth_rate, grmul, n_layers, dwconv=False):
super().__init__()
self.links = []
conv_layers_ = []
bnrelu_layers_ = []
self.layer_bias = []
self.out_channels = 0
self.out_partition = collections.defaultdict(list)
for i in range(n_layers):
outch, inch, link = self.get_link(i+1, in_channels, growth_rate, grmul)
self.links.append(link)
for j in link:
self.out_partition[j].append(outch)
cur_ch = in_channels
for i in range(n_layers):
accum_out_ch = sum( self.out_partition[i] )
real_out_ch = self.out_partition[i][0]
#print( self.links[i], self.out_partition[i], accum_out_ch)
conv_layers_.append( nn.Conv2d(cur_ch, accum_out_ch, kernel_size=3, stride=1, padding=1, bias=True) )
bnrelu_layers_.append( BRLayer(real_out_ch) )
cur_ch = real_out_ch
if (i % 2 == 0) or (i == n_layers - 1):
self.out_channels += real_out_ch
#print("Blk out =",self.out_channels)
self.conv_layers = nn.ModuleList(conv_layers_)
self.bnrelu_layers = nn.ModuleList(bnrelu_layers_)
def transform(self, blk, trt=False):
# Transform weight matrix from a pretrained HarDBlock v1
in_ch = blk.layers[0][0].weight.shape[1]
for i in range(len(self.conv_layers)):
link = self.links[i].copy()
link_ch = [blk.layers[k-1][0].weight.shape[0] if k > 0 else
blk.layers[0 ][0].weight.shape[1] for k in link]
part = self.out_partition[i]
w_src = blk.layers[i][0].weight
b_src = blk.layers[i][0].bias
self.conv_layers[i].weight[0:part[0], :, :,:] = w_src[:, 0:in_ch, :,:]
self.layer_bias.append(b_src)
if b_src is not None:
if trt:
self.conv_layers[i].bias[1:part[0]] = b_src[1:]
self.conv_layers[i].bias[0] = b_src[0]
self.conv_layers[i].bias[part[0]:] = 0
self.layer_bias[i] = None
else:
#for pytorch, add bias with standalone tensor is more efficient than within conv.bias
#this is because the amount of non-zero bias is small,
#but if we use conv.bias, the number of bias will be much larger
self.conv_layers[i].bias = None
else:
self.conv_layers[i].bias = None
in_ch = part[0]
link_ch.reverse()
link.reverse()
if len(link) > 1:
for j in range(1, len(link) ):
ly = link[j]
part_id = self.out_partition[ly].index(part[0])
chos = sum( self.out_partition[ly][0:part_id] )
choe = chos + part[0]
chis = sum( link_ch[0:j] )
chie = chis + link_ch[j]
self.conv_layers[ly].weight[chos:choe, :,:,:] = w_src[:, chis:chie,:,:]
#update BatchNorm or remove it if there is no BatchNorm in the v1 block
self.bnrelu_layers[i] = None
if isinstance(blk.layers[i][1], nn.BatchNorm2d):
self.bnrelu_layers[i] = nn.Sequential(
blk.layers[i][1],
blk.layers[i][2])
else:
self.bnrelu_layers[i] = blk.layers[i][1]
def forward(self, x):
layers_ = []
outs_ = []
xin = x
for i in range(len(self.conv_layers)):
link = self.links[i]
part = self.out_partition[i]
xout = self.conv_layers[i](xin)
layers_.append(xout)
xin = xout[:,0:part[0],:,:] if len(part) > 1 else xout
#print(i)
#if self.layer_bias[i] is not None:
# xin += self.layer_bias[i].view(1,-1,1,1)
if len(link) > 1:
for j in range( len(link) - 1 ):
ly = link[j]
part_id = self.out_partition[ly].index(part[0])
chs = sum( self.out_partition[ly][0:part_id] )
che = chs + part[0]
xin += layers_[ly][:,chs:che,:,:]
xin = self.bnrelu_layers[i](xin)
if i%2 == 0 or i == len(self.conv_layers)-1:
outs_.append(xin)
out = torch.cat(outs_, 1)
2021-01-19 15:00:28 +08:00
return out
class ConvSig(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(ConvSig, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.act = nn.Sigmoid() if act else nn.Identity()
def forward(self, x):
return self.act(self.conv(x))
def fuseforward(self, x):
return self.act(self.conv(x))
class ConvSqu(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(ConvSqu, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.act = Mish() if act else nn.Identity()
def forward(self, x):
return self.act(self.conv(x))
def fuseforward(self, x):
return self.act(self.conv(x))
'''
class SE(nn.Module):
# Squeeze-and-excitation block in https://arxiv.org/abs/1709.01507
def __init__(self, c1, c2, n=1, shortcut=True, g=8, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(SE, self).__init__()
c_ = int(c2) # hidden channels
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.cs = ConvSqu(c1, c1//g, 1, 1)
self.cvsig = ConvSig(c1//g, c1, 1, 1)
def forward(self, x):
return x = x * self.cvsig(self.cs(self.avg_pool(x))).expand_as(x)
class SAM(nn.Module):
# SAM block in yolov4
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super(SAM, self).__init__()
c_ = int(c2 * e) # hidden channels
self.cvsig = ConvSig(c1, c1, 1, 1)
def forward(self, x):
return x = x * self.cvsig(x)
class DNL(nn.Module):
# Disentangled Non-Local block in https://arxiv.org/abs/2006.06668
def __init__(self, c1, c2, k=3, s=1):
super(DNL, self).__init__()
c_ = int(c1) # hidden channels
#
self.conv_query = nn.Conv2d(c1, c_, kernel_size=1)
self.conv_key = nn.Conv2d(c1, c_, kernel_size=1)
self.conv_value = nn.Conv2d(c1, c1, kernel_size=1, bias=False)
self.conv_out = None
self.scale = math.sqrt(c_)
self.temperature = 0.05
self.softmax = nn.Softmax(dim=2)
self.gamma = nn.Parameter(torch.zeros(1))
self.conv_mask = nn.Conv2d(c1, 1, kernel_size=1)
self.cv = Conv(c1, c2, k, s)
def forward(self, x):
# [N, C, T, H, W]
residual = x
# [N, C, T, H', W']
input_x = x
# [N, C', T, H, W]
query = self.conv_query(x)
# [N, C', T, H', W']
key = self.conv_key(input_x)
value = self.conv_value(input_x)
# [N, C', H x W]
query = query.view(query.size(0), query.size(1), -1)
# [N, C', H' x W']
key = key.view(key.size(0), key.size(1), -1)
value = value.view(value.size(0), value.size(1), -1)
# channel whitening
key_mean = key.mean(2).unsqueeze(2)
query_mean = query.mean(2).unsqueeze(2)
key -= key_mean
query -= query_mean
# [N, T x H x W, T x H' x W']
sim_map = torch.bmm(query.transpose(1, 2), key)
sim_map = sim_map/self.scale
sim_map = sim_map/self.temperature
sim_map = self.softmax(sim_map)
# [N, T x H x W, C']
out_sim = torch.bmm(sim_map, value.transpose(1, 2))
# [N, C', T x H x W]
out_sim = out_sim.transpose(1, 2)
# [N, C', T, H, W]
out_sim = out_sim.view(out_sim.size(0), out_sim.size(1), *x.size()[2:])
out_sim = self.gamma * out_sim
# [N, 1, H', W']
mask = self.conv_mask(input_x)
# [N, 1, H'x W']
mask = mask.view(mask.size(0), mask.size(1), -1)
mask = self.softmax(mask)
# [N, C, 1, 1]
out_gc = torch.bmm(value, mask.permute(0,2,1)).unsqueeze(-1)
out_sim = out_sim+out_gc
return self.cv(out_sim + residual)
class GC(nn.Module):
# global context block in https://arxiv.org/abs/1904.11492
def __init__(self, c1, c2, k=3, s=1):
super(GC, self).__init__()
c_ = int(c1) # hidden channels
#
self.channel_add_conv = nn.Sequential(
nn.Conv2d(c1, c_, kernel_size=1),
nn.LayerNorm([c_, 1, 1]),
nn.ReLU(inplace=True), # yapf: disable
nn.Conv2d(c_, c1, kernel_size=1))
self.conv_mask = nn.Conv2d(c_, 1, kernel_size=1)
self.softmax = nn.Softmax(dim=2)
self.cv = Conv(c1, c2, k, s)
def spatial_pool(self, x):
batch, channel, height, width = x.size()
input_x = x
# [N, C, H * W]
input_x = input_x.view(batch, channel, height * width)
# [N, 1, C, H * W]
input_x = input_x.unsqueeze(1)
# [N, 1, H, W]
context_mask = self.conv_mask(x)
# [N, 1, H * W]
context_mask = context_mask.view(batch, 1, height * width)
# [N, 1, H * W]
context_mask = self.softmax(context_mask)
# [N, 1, H * W, 1]
context_mask = context_mask.unsqueeze(-1)
# [N, 1, C, 1]
context = torch.matmul(input_x, context_mask)
# [N, C, 1, 1]
context = context.view(batch, channel, 1, 1)
return context
def forward(self, x):
return self.cv(x + self.channel_add_conv(self.spatial_pool(x)))
'''