Add files via upload
parent
5f5fafd368
commit
22d83f0089
|
@ -0,0 +1,69 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
# Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
|
||||
class Swish(nn.Module): #
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class HardSwish(nn.Module):
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
|
||||
|
||||
|
||||
class MemoryEfficientSwish(nn.Module):
|
||||
class F(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||
|
||||
def forward(self, x):
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||
class Mish(nn.Module):
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * F.softplus(x).tanh()
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
class F(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
fx = F.softplus(x).tanh()
|
||||
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||
|
||||
def forward(self, x):
|
||||
return self.F.apply(x)
|
||||
|
||||
|
||||
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||
class FReLU(nn.Module):
|
||||
def __init__(self, c1, k=3): # ch_in, kernel
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
|
||||
self.bn = nn.BatchNorm2d(c1)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.max(x, self.bn(self.conv(x)))
|
|
@ -0,0 +1,907 @@
|
|||
import glob
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import shutil
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ExifTags
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
||||
|
||||
help_url = ''
|
||||
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
|
||||
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
|
||||
|
||||
# Get orientation exif tag
|
||||
for orientation in ExifTags.TAGS.keys():
|
||||
if ExifTags.TAGS[orientation] == 'Orientation':
|
||||
break
|
||||
|
||||
|
||||
def get_hash(files):
|
||||
# Returns a single hash value of a list of files
|
||||
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
||||
|
||||
|
||||
def exif_size(img):
|
||||
# Returns exif-corrected PIL size
|
||||
s = img.size # (width, height)
|
||||
try:
|
||||
rotation = dict(img._getexif().items())[orientation]
|
||||
if rotation == 6: # rotation 270
|
||||
s = (s[1], s[0])
|
||||
elif rotation == 8: # rotation 90
|
||||
s = (s[1], s[0])
|
||||
except:
|
||||
pass
|
||||
|
||||
return s
|
||||
|
||||
|
||||
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
||||
local_rank=-1, world_size=1):
|
||||
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
|
||||
with torch_distributed_zero_first(local_rank):
|
||||
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
||||
augment=augment, # augment images
|
||||
hyp=hyp, # augmentation hyperparameters
|
||||
rect=rect, # rectangular training
|
||||
cache_images=cache,
|
||||
single_cls=opt.single_cls,
|
||||
stride=int(stride),
|
||||
pad=pad)
|
||||
|
||||
batch_size = min(batch_size, len(dataset))
|
||||
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
|
||||
dataloader = torch.utils.data.DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=nw,
|
||||
sampler=train_sampler,
|
||||
pin_memory=True,
|
||||
collate_fn=LoadImagesAndLabels.collate_fn)
|
||||
return dataloader, dataset
|
||||
|
||||
|
||||
class LoadImages: # for inference
|
||||
def __init__(self, path, img_size=640):
|
||||
p = str(Path(path)) # os-agnostic
|
||||
p = os.path.abspath(p) # absolute path
|
||||
if '*' in p:
|
||||
files = sorted(glob.glob(p)) # glob
|
||||
elif os.path.isdir(p):
|
||||
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
||||
elif os.path.isfile(p):
|
||||
files = [p] # files
|
||||
else:
|
||||
raise Exception('ERROR: %s does not exist' % p)
|
||||
|
||||
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
||||
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
||||
ni, nv = len(images), len(videos)
|
||||
|
||||
self.img_size = img_size
|
||||
self.files = images + videos
|
||||
self.nf = ni + nv # number of files
|
||||
self.video_flag = [False] * ni + [True] * nv
|
||||
self.mode = 'images'
|
||||
if any(videos):
|
||||
self.new_video(videos[0]) # new video
|
||||
else:
|
||||
self.cap = None
|
||||
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
||||
(p, img_formats, vid_formats)
|
||||
|
||||
def __iter__(self):
|
||||
self.count = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.count == self.nf:
|
||||
raise StopIteration
|
||||
path = self.files[self.count]
|
||||
|
||||
if self.video_flag[self.count]:
|
||||
# Read video
|
||||
self.mode = 'video'
|
||||
ret_val, img0 = self.cap.read()
|
||||
if not ret_val:
|
||||
self.count += 1
|
||||
self.cap.release()
|
||||
if self.count == self.nf: # last video
|
||||
raise StopIteration
|
||||
else:
|
||||
path = self.files[self.count]
|
||||
self.new_video(path)
|
||||
ret_val, img0 = self.cap.read()
|
||||
|
||||
self.frame += 1
|
||||
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
||||
|
||||
else:
|
||||
# Read image
|
||||
self.count += 1
|
||||
img0 = cv2.imread(path) # BGR
|
||||
assert img0 is not None, 'Image Not Found ' + path
|
||||
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
||||
|
||||
# Padded resize
|
||||
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
|
||||
return path, img, img0, self.cap
|
||||
|
||||
def new_video(self, path):
|
||||
self.frame = 0
|
||||
self.cap = cv2.VideoCapture(path)
|
||||
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
|
||||
def __len__(self):
|
||||
return self.nf # number of files
|
||||
|
||||
|
||||
class LoadWebcam: # for inference
|
||||
def __init__(self, pipe=0, img_size=640):
|
||||
self.img_size = img_size
|
||||
|
||||
if pipe == '0':
|
||||
pipe = 0 # local camera
|
||||
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
||||
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
||||
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
|
||||
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
||||
|
||||
# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
|
||||
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
|
||||
|
||||
# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
|
||||
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
|
||||
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
|
||||
|
||||
self.pipe = pipe
|
||||
self.cap = cv2.VideoCapture(pipe) # video capture object
|
||||
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
||||
|
||||
def __iter__(self):
|
||||
self.count = -1
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
self.count += 1
|
||||
if cv2.waitKey(1) == ord('q'): # q to quit
|
||||
self.cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
raise StopIteration
|
||||
|
||||
# Read frame
|
||||
if self.pipe == 0: # local camera
|
||||
ret_val, img0 = self.cap.read()
|
||||
img0 = cv2.flip(img0, 1) # flip left-right
|
||||
else: # IP camera
|
||||
n = 0
|
||||
while True:
|
||||
n += 1
|
||||
self.cap.grab()
|
||||
if n % 30 == 0: # skip frames
|
||||
ret_val, img0 = self.cap.retrieve()
|
||||
if ret_val:
|
||||
break
|
||||
|
||||
# Print
|
||||
assert ret_val, 'Camera Error %s' % self.pipe
|
||||
img_path = 'webcam.jpg'
|
||||
print('webcam %g: ' % self.count, end='')
|
||||
|
||||
# Padded resize
|
||||
img = letterbox(img0, new_shape=self.img_size)[0]
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return img_path, img, img0, None
|
||||
|
||||
def __len__(self):
|
||||
return 0
|
||||
|
||||
|
||||
class LoadStreams: # multiple IP or RTSP cameras
|
||||
def __init__(self, sources='streams.txt', img_size=640):
|
||||
self.mode = 'images'
|
||||
self.img_size = img_size
|
||||
|
||||
if os.path.isfile(sources):
|
||||
with open(sources, 'r') as f:
|
||||
sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
|
||||
else:
|
||||
sources = [sources]
|
||||
|
||||
n = len(sources)
|
||||
self.imgs = [None] * n
|
||||
self.sources = sources
|
||||
for i, s in enumerate(sources):
|
||||
# Start the thread to read frames from the video stream
|
||||
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
||||
cap = cv2.VideoCapture(0 if s == '0' else s)
|
||||
assert cap.isOpened(), 'Failed to open %s' % s
|
||||
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
||||
_, self.imgs[i] = cap.read() # guarantee first frame
|
||||
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
||||
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
||||
thread.start()
|
||||
print('') # newline
|
||||
|
||||
# check for common shapes
|
||||
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
||||
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
||||
if not self.rect:
|
||||
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
||||
|
||||
def update(self, index, cap):
|
||||
# Read next stream frame in a daemon thread
|
||||
n = 0
|
||||
while cap.isOpened():
|
||||
n += 1
|
||||
# _, self.imgs[index] = cap.read()
|
||||
cap.grab()
|
||||
if n == 4: # read every 4th frame
|
||||
_, self.imgs[index] = cap.retrieve()
|
||||
n = 0
|
||||
time.sleep(0.01) # wait time
|
||||
|
||||
def __iter__(self):
|
||||
self.count = -1
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
self.count += 1
|
||||
img0 = self.imgs.copy()
|
||||
if cv2.waitKey(1) == ord('q'): # q to quit
|
||||
cv2.destroyAllWindows()
|
||||
raise StopIteration
|
||||
|
||||
# Letterbox
|
||||
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
|
||||
|
||||
# Stack
|
||||
img = np.stack(img, 0)
|
||||
|
||||
# Convert
|
||||
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return self.sources, img, img0, None
|
||||
|
||||
def __len__(self):
|
||||
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
|
||||
|
||||
|
||||
class LoadImagesAndLabels(Dataset): # for training/testing
|
||||
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
||||
cache_images=False, single_cls=False, stride=32, pad=0.0):
|
||||
try:
|
||||
f = [] # image files
|
||||
for p in path if isinstance(path, list) else [path]:
|
||||
p = str(Path(p)) # os-agnostic
|
||||
parent = str(Path(p).parent) + os.sep
|
||||
if os.path.isfile(p): # file
|
||||
with open(p, 'r') as t:
|
||||
t = t.read().splitlines()
|
||||
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
||||
elif os.path.isdir(p): # folder
|
||||
f += glob.iglob(p + os.sep + '*.*')
|
||||
else:
|
||||
raise Exception('%s does not exist' % p)
|
||||
self.img_files = sorted(
|
||||
[x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
|
||||
except Exception as e:
|
||||
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
||||
|
||||
n = len(self.img_files)
|
||||
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
|
||||
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
||||
nb = bi[-1] + 1 # number of batches
|
||||
|
||||
self.n = n # number of images
|
||||
self.batch = bi # batch index of image
|
||||
self.img_size = img_size
|
||||
self.augment = augment
|
||||
self.hyp = hyp
|
||||
self.image_weights = image_weights
|
||||
self.rect = False if image_weights else rect
|
||||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||
self.stride = stride
|
||||
|
||||
# Define labels
|
||||
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
|
||||
self.img_files]
|
||||
|
||||
# Check cache
|
||||
cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
|
||||
if os.path.isfile(cache_path):
|
||||
cache = torch.load(cache_path) # load
|
||||
if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
|
||||
cache = self.cache_labels(cache_path) # re-cache
|
||||
else:
|
||||
cache = self.cache_labels(cache_path) # cache
|
||||
|
||||
# Get labels
|
||||
labels, shapes = zip(*[cache[x] for x in self.img_files])
|
||||
self.shapes = np.array(shapes, dtype=np.float64)
|
||||
self.labels = list(labels)
|
||||
|
||||
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
||||
if self.rect:
|
||||
# Sort by aspect ratio
|
||||
s = self.shapes # wh
|
||||
ar = s[:, 1] / s[:, 0] # aspect ratio
|
||||
irect = ar.argsort()
|
||||
self.img_files = [self.img_files[i] for i in irect]
|
||||
self.label_files = [self.label_files[i] for i in irect]
|
||||
self.labels = [self.labels[i] for i in irect]
|
||||
self.shapes = s[irect] # wh
|
||||
ar = ar[irect]
|
||||
|
||||
# Set training image shapes
|
||||
shapes = [[1, 1]] * nb
|
||||
for i in range(nb):
|
||||
ari = ar[bi == i]
|
||||
mini, maxi = ari.min(), ari.max()
|
||||
if maxi < 1:
|
||||
shapes[i] = [maxi, 1]
|
||||
elif mini > 1:
|
||||
shapes[i] = [1, 1 / mini]
|
||||
|
||||
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
||||
|
||||
# Cache labels
|
||||
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
|
||||
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
||||
pbar = tqdm(self.label_files)
|
||||
for i, file in enumerate(pbar):
|
||||
l = self.labels[i] # label
|
||||
if l.shape[0]:
|
||||
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
||||
assert (l >= 0).all(), 'negative labels: %s' % file
|
||||
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
||||
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
||||
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
|
||||
if single_cls:
|
||||
l[:, 0] = 0 # force dataset into single-class mode
|
||||
self.labels[i] = l
|
||||
nf += 1 # file found
|
||||
|
||||
# Create subdataset (a smaller dataset)
|
||||
if create_datasubset and ns < 1E4:
|
||||
if ns == 0:
|
||||
create_folder(path='./datasubset')
|
||||
os.makedirs('./datasubset/images')
|
||||
exclude_classes = 43
|
||||
if exclude_classes not in l[:, 0]:
|
||||
ns += 1
|
||||
# shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
|
||||
with open('./datasubset/images.txt', 'a') as f:
|
||||
f.write(self.img_files[i] + '\n')
|
||||
|
||||
# Extract object detection boxes for a second stage classifier
|
||||
if extract_bounding_boxes:
|
||||
p = Path(self.img_files[i])
|
||||
img = cv2.imread(str(p))
|
||||
h, w = img.shape[:2]
|
||||
for j, x in enumerate(l):
|
||||
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
|
||||
if not os.path.exists(Path(f).parent):
|
||||
os.makedirs(Path(f).parent) # make new output folder
|
||||
|
||||
b = x[1:] * [w, h, w, h] # box
|
||||
b[2:] = b[2:].max() # rectangle to square
|
||||
b[2:] = b[2:] * 1.3 + 30 # pad
|
||||
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
||||
|
||||
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
||||
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
||||
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
|
||||
else:
|
||||
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
||||
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
||||
|
||||
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
||||
cache_path, nf, nm, ne, nd, n)
|
||||
if nf == 0:
|
||||
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
||||
print(s)
|
||||
assert not augment, '%s. Can not train without labels.' % s
|
||||
|
||||
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
||||
self.imgs = [None] * n
|
||||
if cache_images:
|
||||
gb = 0 # Gigabytes of cached images
|
||||
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
|
||||
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
||||
for i in pbar: # max 10k images
|
||||
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
|
||||
gb += self.imgs[i].nbytes
|
||||
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
||||
|
||||
def cache_labels(self, path='labels.cache'):
|
||||
# Cache dataset labels, check images and read shapes
|
||||
x = {} # dict
|
||||
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
||||
for (img, label) in pbar:
|
||||
try:
|
||||
l = []
|
||||
image = Image.open(img)
|
||||
image.verify() # PIL verify
|
||||
# _ = io.imread(img) # skimage verify (from skimage import io)
|
||||
shape = exif_size(image) # image size
|
||||
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
||||
if os.path.isfile(label):
|
||||
with open(label, 'r') as f:
|
||||
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
|
||||
if len(l) == 0:
|
||||
l = np.zeros((0, 5), dtype=np.float32)
|
||||
x[img] = [l, shape]
|
||||
except Exception as e:
|
||||
x[img] = None
|
||||
print('WARNING: %s: %s' % (img, e))
|
||||
|
||||
x['hash'] = get_hash(self.label_files + self.img_files)
|
||||
torch.save(x, path) # save for next time
|
||||
return x
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_files)
|
||||
|
||||
# def __iter__(self):
|
||||
# self.count = -1
|
||||
# print('ran dataset iter')
|
||||
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
||||
# return self
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.image_weights:
|
||||
index = self.indices[index]
|
||||
|
||||
hyp = self.hyp
|
||||
if self.mosaic:
|
||||
# Load mosaic
|
||||
img, labels = load_mosaic(self, index)
|
||||
shapes = None
|
||||
|
||||
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
||||
if random.random() < hyp['mixup']:
|
||||
img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
|
||||
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
||||
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
||||
labels = np.concatenate((labels, labels2), 0)
|
||||
|
||||
else:
|
||||
# Load image
|
||||
img, (h0, w0), (h, w) = load_image(self, index)
|
||||
|
||||
# Letterbox
|
||||
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
||||
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
||||
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
||||
|
||||
# Load labels
|
||||
labels = []
|
||||
x = self.labels[index]
|
||||
if x.size > 0:
|
||||
# Normalized xywh to pixel xyxy format
|
||||
labels = x.copy()
|
||||
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
||||
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
||||
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
||||
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
||||
|
||||
if self.augment:
|
||||
# Augment imagespace
|
||||
if not self.mosaic:
|
||||
img, labels = random_perspective(img, labels,
|
||||
degrees=hyp['degrees'],
|
||||
translate=hyp['translate'],
|
||||
scale=hyp['scale'],
|
||||
shear=hyp['shear'],
|
||||
perspective=hyp['perspective'])
|
||||
|
||||
# Augment colorspace
|
||||
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
||||
|
||||
# Apply cutouts
|
||||
# if random.random() < 0.9:
|
||||
# labels = cutout(img, labels)
|
||||
|
||||
nL = len(labels) # number of labels
|
||||
if nL:
|
||||
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
||||
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
||||
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
||||
|
||||
if self.augment:
|
||||
# flip up-down
|
||||
if random.random() < hyp['flipud']:
|
||||
img = np.flipud(img)
|
||||
if nL:
|
||||
labels[:, 2] = 1 - labels[:, 2]
|
||||
|
||||
# flip left-right
|
||||
if random.random() < hyp['fliplr']:
|
||||
img = np.fliplr(img)
|
||||
if nL:
|
||||
labels[:, 1] = 1 - labels[:, 1]
|
||||
|
||||
labels_out = torch.zeros((nL, 6))
|
||||
if nL:
|
||||
labels_out[:, 1:] = torch.from_numpy(labels)
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
||||
|
||||
@staticmethod
|
||||
def collate_fn(batch):
|
||||
img, label, path, shapes = zip(*batch) # transposed
|
||||
for i, l in enumerate(label):
|
||||
l[:, 0] = i # add target image index for build_targets()
|
||||
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
||||
|
||||
|
||||
# Ancillary functions --------------------------------------------------------------------------------------------------
|
||||
def load_image(self, index):
|
||||
# loads 1 image from dataset, returns img, original hw, resized hw
|
||||
img = self.imgs[index]
|
||||
if img is None: # not cached
|
||||
path = self.img_files[index]
|
||||
img = cv2.imread(path) # BGR
|
||||
assert img is not None, 'Image Not Found ' + path
|
||||
h0, w0 = img.shape[:2] # orig hw
|
||||
r = self.img_size / max(h0, w0) # resize image to img_size
|
||||
if r != 1: # always resize down, only resize up if training with augmentation
|
||||
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
||||
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
||||
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
||||
else:
|
||||
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
||||
|
||||
|
||||
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
||||
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
||||
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
||||
dtype = img.dtype # uint8
|
||||
|
||||
x = np.arange(0, 256, dtype=np.int16)
|
||||
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
||||
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
||||
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
||||
|
||||
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
||||
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
||||
|
||||
# Histogram equalization
|
||||
# if random.random() < 0.2:
|
||||
# for i in range(3):
|
||||
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
||||
|
||||
|
||||
def load_mosaic(self, index):
|
||||
# loads images in a mosaic
|
||||
|
||||
labels4 = []
|
||||
s = self.img_size
|
||||
yc, xc = s, s # mosaic center x, y
|
||||
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
|
||||
for i, index in enumerate(indices):
|
||||
# Load image
|
||||
img, _, (h, w) = load_image(self, index)
|
||||
|
||||
# place img in img4
|
||||
if i == 0: # top left
|
||||
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
||||
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
||||
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
||||
elif i == 1: # top right
|
||||
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
||||
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
||||
elif i == 2: # bottom left
|
||||
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
||||
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
|
||||
elif i == 3: # bottom right
|
||||
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
||||
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
||||
|
||||
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||
padw = x1a - x1b
|
||||
padh = y1a - y1b
|
||||
|
||||
# Labels
|
||||
x = self.labels[index]
|
||||
labels = x.copy()
|
||||
if x.size > 0: # Normalized xywh to pixel xyxy format
|
||||
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
||||
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
||||
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
||||
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
||||
labels4.append(labels)
|
||||
|
||||
# Concat/clip labels
|
||||
if len(labels4):
|
||||
labels4 = np.concatenate(labels4, 0)
|
||||
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
|
||||
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
|
||||
|
||||
# Replicate
|
||||
# img4, labels4 = replicate(img4, labels4)
|
||||
|
||||
# Augment
|
||||
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
||||
img4, labels4 = random_perspective(img4, labels4,
|
||||
degrees=self.hyp['degrees'],
|
||||
translate=self.hyp['translate'],
|
||||
scale=self.hyp['scale'],
|
||||
shear=self.hyp['shear'],
|
||||
perspective=self.hyp['perspective'],
|
||||
border=self.mosaic_border) # border to remove
|
||||
|
||||
return img4, labels4
|
||||
|
||||
|
||||
def replicate(img, labels):
|
||||
# Replicate labels
|
||||
h, w = img.shape[:2]
|
||||
boxes = labels[:, 1:].astype(int)
|
||||
x1, y1, x2, y2 = boxes.T
|
||||
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
||||
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
||||
x1b, y1b, x2b, y2b = boxes[i]
|
||||
bh, bw = y2b - y1b, x2b - x1b
|
||||
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
||||
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
||||
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
||||
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
||||
|
||||
return img, labels
|
||||
|
||||
|
||||
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
||||
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
||||
shape = img.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
||||
r = min(r, 1.0)
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
if auto: # minimum rectangle
|
||||
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
|
||||
elif scaleFill: # stretch
|
||||
dw, dh = 0.0, 0.0
|
||||
new_unpad = (new_shape[1], new_shape[0])
|
||||
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return img, ratio, (dw, dh)
|
||||
|
||||
|
||||
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
||||
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
||||
# targets = [cls, xyxy]
|
||||
|
||||
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
||||
width = img.shape[1] + border[1] * 2
|
||||
|
||||
# Center
|
||||
C = np.eye(3)
|
||||
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
||||
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
||||
|
||||
# Perspective
|
||||
P = np.eye(3)
|
||||
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
||||
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
||||
|
||||
# Rotation and Scale
|
||||
R = np.eye(3)
|
||||
a = random.uniform(-degrees, degrees)
|
||||
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
||||
s = random.uniform(1 - scale, 1 + scale)
|
||||
# s = 2 ** random.uniform(-scale, scale)
|
||||
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
||||
|
||||
# Shear
|
||||
S = np.eye(3)
|
||||
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
||||
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
||||
|
||||
# Translation
|
||||
T = np.eye(3)
|
||||
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
||||
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
||||
|
||||
# Combined rotation matrix
|
||||
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
||||
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
||||
if perspective:
|
||||
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
||||
else: # affine
|
||||
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
||||
|
||||
# Visualize
|
||||
# import matplotlib.pyplot as plt
|
||||
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
||||
# ax[0].imshow(img[:, :, ::-1]) # base
|
||||
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
||||
|
||||
# Transform label coordinates
|
||||
n = len(targets)
|
||||
if n:
|
||||
# warp points
|
||||
xy = np.ones((n * 4, 3))
|
||||
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
||||
xy = xy @ M.T # transform
|
||||
if perspective:
|
||||
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
||||
else: # affine
|
||||
xy = xy[:, :2].reshape(n, 8)
|
||||
|
||||
# create new boxes
|
||||
x = xy[:, [0, 2, 4, 6]]
|
||||
y = xy[:, [1, 3, 5, 7]]
|
||||
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
||||
|
||||
# # apply angle-based reduction of bounding boxes
|
||||
# radians = a * math.pi / 180
|
||||
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
||||
# x = (xy[:, 2] + xy[:, 0]) / 2
|
||||
# y = (xy[:, 3] + xy[:, 1]) / 2
|
||||
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
||||
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
||||
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
||||
|
||||
# clip boxes
|
||||
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
||||
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
||||
|
||||
# filter candidates
|
||||
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
||||
targets = targets[i]
|
||||
targets[:, 1:5] = xy[i]
|
||||
|
||||
return img, targets
|
||||
|
||||
|
||||
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2): # box1(4,n), box2(4,n)
|
||||
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
||||
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
||||
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
||||
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
||||
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
||||
|
||||
|
||||
def cutout(image, labels):
|
||||
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
||||
h, w = image.shape[:2]
|
||||
|
||||
def bbox_ioa(box1, box2):
|
||||
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
||||
box2 = box2.transpose()
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||
|
||||
# Intersection area
|
||||
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
||||
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
||||
|
||||
# box2 area
|
||||
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
||||
|
||||
# Intersection over box2 area
|
||||
return inter_area / box2_area
|
||||
|
||||
# create random masks
|
||||
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
||||
for s in scales:
|
||||
mask_h = random.randint(1, int(h * s))
|
||||
mask_w = random.randint(1, int(w * s))
|
||||
|
||||
# box
|
||||
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
||||
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
||||
xmax = min(w, xmin + mask_w)
|
||||
ymax = min(h, ymin + mask_h)
|
||||
|
||||
# apply random color mask
|
||||
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
||||
|
||||
# return unobscured labels
|
||||
if len(labels) and s > 0.03:
|
||||
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
||||
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
||||
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
def reduce_img_size(path='path/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
|
||||
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
|
||||
path_new = path + '_reduced' # reduced images path
|
||||
create_folder(path_new)
|
||||
for f in tqdm(glob.glob('%s/*.*' % path)):
|
||||
try:
|
||||
img = cv2.imread(f)
|
||||
h, w = img.shape[:2]
|
||||
r = img_size / max(h, w) # size ratio
|
||||
if r < 1.0:
|
||||
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
|
||||
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
|
||||
cv2.imwrite(fnew, img)
|
||||
except:
|
||||
print('WARNING: image failure %s' % f)
|
||||
|
||||
|
||||
def recursive_dataset2bmp(dataset='path/dataset_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
|
||||
# Converts dataset to bmp (for faster training)
|
||||
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
|
||||
for a, b, files in os.walk(dataset):
|
||||
for file in tqdm(files, desc=a):
|
||||
p = a + '/' + file
|
||||
s = Path(file).suffix
|
||||
if s == '.txt': # replace text
|
||||
with open(p, 'r') as f:
|
||||
lines = f.read()
|
||||
for f in formats:
|
||||
lines = lines.replace(f, '.bmp')
|
||||
with open(p, 'w') as f:
|
||||
f.write(lines)
|
||||
elif s in formats: # replace image
|
||||
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
|
||||
if s != '.bmp':
|
||||
os.system("rm '%s'" % p)
|
||||
|
||||
|
||||
def imagelist2folder(path='path/images.txt'): # from utils.datasets import *; imagelist2folder()
|
||||
# Copies all the images in a text file (list of images) into a folder
|
||||
create_folder(path[:-4])
|
||||
with open(path, 'r') as f:
|
||||
for line in f.read().splitlines():
|
||||
os.system('cp "%s" %s' % (line, path[:-4]))
|
||||
print(line)
|
||||
|
||||
|
||||
def create_folder(path='./new'):
|
||||
# Create folder
|
||||
if os.path.exists(path):
|
||||
shutil.rmtree(path) # delete output folder
|
||||
os.makedirs(path) # make new output folder
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,76 @@
|
|||
# This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||
# pip install --upgrade google-cloud-storage
|
||||
# from google.cloud import storage
|
||||
|
||||
import os
|
||||
import platform
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def attempt_download(weights):
|
||||
# Attempt to download pretrained weights if not found locally
|
||||
weights = weights.strip().replace("'", '')
|
||||
msg = weights + ' missing'
|
||||
|
||||
r = 1 # return
|
||||
if len(weights) > 0 and not os.path.isfile(weights):
|
||||
d = {'': '',
|
||||
}
|
||||
|
||||
file = Path(weights).name
|
||||
if file in d:
|
||||
r = gdrive_download(id=d[file], name=weights)
|
||||
|
||||
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
|
||||
os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
|
||||
s = 'curl -L -o %s "storage.googleapis.com/%s"' % (weights, file)
|
||||
r = os.system(s) # execute, capture return values
|
||||
|
||||
# Error check
|
||||
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
|
||||
os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
|
||||
raise Exception(msg)
|
||||
|
||||
|
||||
def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'):
|
||||
# Downloads a file from Google Drive, accepting presented query
|
||||
# from utils.google_utils import *; gdrive_download()
|
||||
t = time.time()
|
||||
|
||||
print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
|
||||
os.remove(name) if os.path.exists(name) else None # remove existing
|
||||
os.remove('cookie') if os.path.exists('cookie') else None
|
||||
|
||||
# Attempt file download
|
||||
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||
os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
|
||||
if os.path.exists('cookie'): # large file
|
||||
s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
|
||||
else: # small file
|
||||
s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
|
||||
r = os.system(s) # execute, capture return values
|
||||
os.remove('cookie') if os.path.exists('cookie') else None
|
||||
|
||||
# Error check
|
||||
if r != 0:
|
||||
os.remove(name) if os.path.exists(name) else None # remove partial
|
||||
print('Download error ') # raise Exception('Download error')
|
||||
return r
|
||||
|
||||
# Unzip if archive
|
||||
if name.endswith('.zip'):
|
||||
print('unzipping... ', end='')
|
||||
os.system('unzip -q %s' % name) # unzip
|
||||
os.remove(name) # remove zip to free space
|
||||
|
||||
print('Done (%.1fs)' % (time.time() - t))
|
||||
return r
|
||||
|
||||
|
||||
def get_token(cookie="./cookie"):
|
||||
with open(cookie) as f:
|
||||
for line in f:
|
||||
if "download" in line:
|
||||
return line.split()[-1]
|
||||
return ""
|
|
@ -0,0 +1,323 @@
|
|||
import torch.nn.functional as F
|
||||
|
||||
from utils.general import *
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from mish_cuda import MishCuda as Mish
|
||||
|
||||
|
||||
def make_divisible(v, divisor):
|
||||
# Function ensures all layers have a channel number that is divisible by 8
|
||||
# https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||||
return math.ceil(v / divisor) * divisor
|
||||
|
||||
|
||||
class Flatten(nn.Module):
|
||||
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
|
||||
def forward(self, x):
|
||||
return x.view(x.size(0), -1)
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
# Concatenate a list of tensors along dimension
|
||||
def __init__(self, dimension=1):
|
||||
super(Concat, self).__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x):
|
||||
return torch.cat(x, self.d)
|
||||
|
||||
|
||||
class FeatureConcat(nn.Module):
|
||||
def __init__(self, layers):
|
||||
super(FeatureConcat, self).__init__()
|
||||
self.layers = layers # layer indices
|
||||
self.multiple = len(layers) > 1 # multiple layers flag
|
||||
|
||||
def forward(self, x, outputs):
|
||||
return torch.cat([outputs[i] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]]
|
||||
|
||||
|
||||
class FeatureConcat2(nn.Module):
|
||||
def __init__(self, layers):
|
||||
super(FeatureConcat2, self).__init__()
|
||||
self.layers = layers # layer indices
|
||||
self.multiple = len(layers) > 1 # multiple layers flag
|
||||
|
||||
def forward(self, x, outputs):
|
||||
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach()], 1)
|
||||
|
||||
|
||||
class FeatureConcat3(nn.Module):
|
||||
def __init__(self, layers):
|
||||
super(FeatureConcat3, self).__init__()
|
||||
self.layers = layers # layer indices
|
||||
self.multiple = len(layers) > 1 # multiple layers flag
|
||||
|
||||
def forward(self, x, outputs):
|
||||
return torch.cat([outputs[self.layers[0]], outputs[self.layers[1]].detach(), outputs[self.layers[2]].detach()], 1)
|
||||
|
||||
|
||||
class FeatureConcat_l(nn.Module):
|
||||
def __init__(self, layers):
|
||||
super(FeatureConcat_l, self).__init__()
|
||||
self.layers = layers # layer indices
|
||||
self.multiple = len(layers) > 1 # multiple layers flag
|
||||
|
||||
def forward(self, x, outputs):
|
||||
return torch.cat([outputs[i][:,:outputs[i].shape[1]//2,:,:] for i in self.layers], 1) if self.multiple else outputs[self.layers[0]][:,:outputs[self.layers[0]].shape[1]//2,:,:]
|
||||
|
||||
|
||||
class WeightedFeatureFusion(nn.Module): # weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||
def __init__(self, layers, weight=False):
|
||||
super(WeightedFeatureFusion, self).__init__()
|
||||
self.layers = layers # layer indices
|
||||
self.weight = weight # apply weights boolean
|
||||
self.n = len(layers) + 1 # number of layers
|
||||
if weight:
|
||||
self.w = nn.Parameter(torch.zeros(self.n), requires_grad=True) # layer weights
|
||||
|
||||
def forward(self, x, outputs):
|
||||
# Weights
|
||||
if self.weight:
|
||||
w = torch.sigmoid(self.w) * (2 / self.n) # sigmoid weights (0-1)
|
||||
x = x * w[0]
|
||||
|
||||
# Fusion
|
||||
nx = x.shape[1] # input channels
|
||||
for i in range(self.n - 1):
|
||||
a = outputs[self.layers[i]] * w[i + 1] if self.weight else outputs[self.layers[i]] # feature to add
|
||||
na = a.shape[1] # feature channels
|
||||
|
||||
# Adjust channels
|
||||
if nx == na: # same shape
|
||||
x = x + a
|
||||
elif nx > na: # slice input
|
||||
x[:, :na] = x[:, :na] + a # or a = nn.ZeroPad2d((0, 0, 0, 0, 0, dc))(a); x = x + a
|
||||
else: # slice feature
|
||||
x = x + a[:, :nx]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MixConv2d(nn.Module): # MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
|
||||
def __init__(self, in_ch, out_ch, k=(3, 5, 7), stride=1, dilation=1, bias=True, method='equal_params'):
|
||||
super(MixConv2d, self).__init__()
|
||||
|
||||
groups = len(k)
|
||||
if method == 'equal_ch': # equal channels per group
|
||||
i = torch.linspace(0, groups - 1E-6, out_ch).floor() # out_ch indices
|
||||
ch = [(i == g).sum() for g in range(groups)]
|
||||
else: # 'equal_params': equal parameter count per group
|
||||
b = [out_ch] + [0] * groups
|
||||
a = np.eye(groups + 1, groups, k=-1)
|
||||
a -= np.roll(a, 1, axis=1)
|
||||
a *= np.array(k) ** 2
|
||||
a[0] = 1
|
||||
ch = np.linalg.lstsq(a, b, rcond=None)[0].round().astype(int) # solve for equal weight indices, ax = b
|
||||
|
||||
self.m = nn.ModuleList([nn.Conv2d(in_channels=in_ch,
|
||||
out_channels=ch[g],
|
||||
kernel_size=k[g],
|
||||
stride=stride,
|
||||
padding=k[g] // 2, # 'same' pad
|
||||
dilation=dilation,
|
||||
bias=bias) for g in range(groups)])
|
||||
|
||||
def forward(self, x):
|
||||
return torch.cat([m(x) for m in self.m], 1)
|
||||
|
||||
|
||||
# Activation functions below -------------------------------------------------------------------------------------------
|
||||
class SwishImplementation(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x) # sigmoid(ctx)
|
||||
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||
|
||||
|
||||
class MishImplementation(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
ctx.save_for_backward(x)
|
||||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
x = ctx.saved_tensors[0]
|
||||
sx = torch.sigmoid(x)
|
||||
fx = F.softplus(x).tanh()
|
||||
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||
|
||||
|
||||
class MemoryEfficientSwish(nn.Module):
|
||||
def forward(self, x):
|
||||
return SwishImplementation.apply(x)
|
||||
|
||||
|
||||
class MemoryEfficientMish(nn.Module):
|
||||
def forward(self, x):
|
||||
return MishImplementation.apply(x)
|
||||
|
||||
|
||||
class Swish(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class HardSwish(nn.Module): # https://arxiv.org/pdf/1905.02244.pdf
|
||||
def forward(self, x):
|
||||
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
|
||||
|
||||
|
||||
#class Mish(nn.Module): # https://github.com/digantamisra98/Mish
|
||||
# def forward(self, x):
|
||||
# return x * F.softplus(x).tanh()
|
||||
|
||||
class DeformConv2d(nn.Module):
|
||||
def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False):
|
||||
"""
|
||||
Args:
|
||||
modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2).
|
||||
"""
|
||||
super(DeformConv2d, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.zero_padding = nn.ZeroPad2d(padding)
|
||||
self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias)
|
||||
|
||||
self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
|
||||
nn.init.constant_(self.p_conv.weight, 0)
|
||||
self.p_conv.register_backward_hook(self._set_lr)
|
||||
|
||||
self.modulation = modulation
|
||||
if modulation:
|
||||
self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
|
||||
nn.init.constant_(self.m_conv.weight, 0)
|
||||
self.m_conv.register_backward_hook(self._set_lr)
|
||||
|
||||
@staticmethod
|
||||
def _set_lr(module, grad_input, grad_output):
|
||||
grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
|
||||
grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
|
||||
|
||||
def forward(self, x):
|
||||
offset = self.p_conv(x)
|
||||
if self.modulation:
|
||||
m = torch.sigmoid(self.m_conv(x))
|
||||
|
||||
dtype = offset.data.type()
|
||||
ks = self.kernel_size
|
||||
N = offset.size(1) // 2
|
||||
|
||||
if self.padding:
|
||||
x = self.zero_padding(x)
|
||||
|
||||
# (b, 2N, h, w)
|
||||
p = self._get_p(offset, dtype)
|
||||
|
||||
# (b, h, w, 2N)
|
||||
p = p.contiguous().permute(0, 2, 3, 1)
|
||||
q_lt = p.detach().floor()
|
||||
q_rb = q_lt + 1
|
||||
|
||||
q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long()
|
||||
q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long()
|
||||
q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
|
||||
q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
|
||||
|
||||
# clip p
|
||||
p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1)
|
||||
|
||||
# bilinear kernel (b, h, w, N)
|
||||
g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
|
||||
g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
|
||||
g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
|
||||
g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
|
||||
|
||||
# (b, c, h, w, N)
|
||||
x_q_lt = self._get_x_q(x, q_lt, N)
|
||||
x_q_rb = self._get_x_q(x, q_rb, N)
|
||||
x_q_lb = self._get_x_q(x, q_lb, N)
|
||||
x_q_rt = self._get_x_q(x, q_rt, N)
|
||||
|
||||
# (b, c, h, w, N)
|
||||
x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
|
||||
g_rb.unsqueeze(dim=1) * x_q_rb + \
|
||||
g_lb.unsqueeze(dim=1) * x_q_lb + \
|
||||
g_rt.unsqueeze(dim=1) * x_q_rt
|
||||
|
||||
# modulation
|
||||
if self.modulation:
|
||||
m = m.contiguous().permute(0, 2, 3, 1)
|
||||
m = m.unsqueeze(dim=1)
|
||||
m = torch.cat([m for _ in range(x_offset.size(1))], dim=1)
|
||||
x_offset *= m
|
||||
|
||||
x_offset = self._reshape_x_offset(x_offset, ks)
|
||||
out = self.conv(x_offset)
|
||||
|
||||
return out
|
||||
|
||||
def _get_p_n(self, N, dtype):
|
||||
p_n_x, p_n_y = torch.meshgrid(
|
||||
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1),
|
||||
torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1))
|
||||
# (2N, 1)
|
||||
p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0)
|
||||
p_n = p_n.view(1, 2*N, 1, 1).type(dtype)
|
||||
|
||||
return p_n
|
||||
|
||||
def _get_p_0(self, h, w, N, dtype):
|
||||
p_0_x, p_0_y = torch.meshgrid(
|
||||
torch.arange(1, h*self.stride+1, self.stride),
|
||||
torch.arange(1, w*self.stride+1, self.stride))
|
||||
p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
|
||||
p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
|
||||
p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
|
||||
|
||||
return p_0
|
||||
|
||||
def _get_p(self, offset, dtype):
|
||||
N, h, w = offset.size(1)//2, offset.size(2), offset.size(3)
|
||||
|
||||
# (1, 2N, 1, 1)
|
||||
p_n = self._get_p_n(N, dtype)
|
||||
# (1, 2N, h, w)
|
||||
p_0 = self._get_p_0(h, w, N, dtype)
|
||||
p = p_0 + p_n + offset
|
||||
return p
|
||||
|
||||
def _get_x_q(self, x, q, N):
|
||||
b, h, w, _ = q.size()
|
||||
padded_w = x.size(3)
|
||||
c = x.size(1)
|
||||
# (b, c, h*w)
|
||||
x = x.contiguous().view(b, c, -1)
|
||||
|
||||
# (b, h, w, N)
|
||||
index = q[..., :N]*padded_w + q[..., N:] # offset_x*w + offset_y
|
||||
# (b, c, h*w*N)
|
||||
index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
|
||||
|
||||
x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
|
||||
|
||||
return x_offset
|
||||
|
||||
@staticmethod
|
||||
def _reshape_x_offset(x_offset, ks):
|
||||
b, c, h, w, N = x_offset.size()
|
||||
x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1)
|
||||
x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks)
|
||||
|
||||
return x_offset
|
|
@ -0,0 +1,70 @@
|
|||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def parse_model_cfg(path):
|
||||
# Parse the yolo *.cfg file and return module definitions path may be 'cfg/yolov3.cfg', 'yolov3.cfg', or 'yolov3'
|
||||
if not path.endswith('.cfg'): # add .cfg suffix if omitted
|
||||
path += '.cfg'
|
||||
if not os.path.exists(path) and os.path.exists('cfg' + os.sep + path): # add cfg/ prefix if omitted
|
||||
path = 'cfg' + os.sep + path
|
||||
|
||||
with open(path, 'r') as f:
|
||||
lines = f.read().split('\n')
|
||||
lines = [x for x in lines if x and not x.startswith('#')]
|
||||
lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
|
||||
mdefs = [] # module definitions
|
||||
for line in lines:
|
||||
if line.startswith('['): # This marks the start of a new block
|
||||
mdefs.append({})
|
||||
mdefs[-1]['type'] = line[1:-1].rstrip()
|
||||
if mdefs[-1]['type'] == 'convolutional':
|
||||
mdefs[-1]['batch_normalize'] = 0 # pre-populate with zeros (may be overwritten later)
|
||||
else:
|
||||
key, val = line.split("=")
|
||||
key = key.rstrip()
|
||||
|
||||
if key == 'anchors': # return nparray
|
||||
mdefs[-1][key] = np.array([float(x) for x in val.split(',')]).reshape((-1, 2)) # np anchors
|
||||
elif (key in ['from', 'layers', 'mask']) or (key == 'size' and ',' in val): # return array
|
||||
mdefs[-1][key] = [int(x) for x in val.split(',')]
|
||||
else:
|
||||
val = val.strip()
|
||||
if val.isnumeric(): # return int or float
|
||||
mdefs[-1][key] = int(val) if (int(val) - float(val)) == 0 else float(val)
|
||||
else:
|
||||
mdefs[-1][key] = val # return string
|
||||
|
||||
# Check all fields are supported
|
||||
supported = ['type', 'batch_normalize', 'filters', 'size', 'stride', 'pad', 'activation', 'layers', 'groups',
|
||||
'from', 'mask', 'anchors', 'classes', 'num', 'jitter', 'ignore_thresh', 'truth_thresh', 'random',
|
||||
'stride_x', 'stride_y', 'weights_type', 'weights_normalization', 'scale_x_y', 'beta_nms', 'nms_kind',
|
||||
'iou_loss', 'iou_normalizer', 'cls_normalizer', 'iou_thresh']
|
||||
|
||||
f = [] # fields
|
||||
for x in mdefs[1:]:
|
||||
[f.append(k) for k in x if k not in f]
|
||||
u = [x for x in f if x not in supported] # unsupported fields
|
||||
assert not any(u), "Unsupported fields %s in %s. See https://github.com/ultralytics/yolov3/issues/631" % (u, path)
|
||||
|
||||
return mdefs
|
||||
|
||||
|
||||
def parse_data_cfg(path):
|
||||
# Parses the data configuration file
|
||||
if not os.path.exists(path) and os.path.exists('data' + os.sep + path): # add data/ prefix if omitted
|
||||
path = 'data' + os.sep + path
|
||||
|
||||
with open(path, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
options = dict()
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if line == '' or line.startswith('#'):
|
||||
continue
|
||||
key, val = line.split('=')
|
||||
options[key.strip()] = val.strip()
|
||||
|
||||
return options
|
|
@ -0,0 +1,226 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
from copy import deepcopy
|
||||
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.models as models
|
||||
|
||||
|
||||
def init_seeds(seed=0):
|
||||
torch.manual_seed(seed)
|
||||
|
||||
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||
if seed == 0: # slower, more reproducible
|
||||
cudnn.deterministic = True
|
||||
cudnn.benchmark = False
|
||||
else: # faster, less reproducible
|
||||
cudnn.deterministic = False
|
||||
cudnn.benchmark = True
|
||||
|
||||
|
||||
def select_device(device='', batch_size=None):
|
||||
# device = 'cpu' or '0' or '0,1,2,3'
|
||||
cpu_request = device.lower() == 'cpu'
|
||||
if device and not cpu_request: # if device requested other than 'cpu'
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
||||
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
|
||||
|
||||
cuda = False if cpu_request else torch.cuda.is_available()
|
||||
if cuda:
|
||||
c = 1024 ** 2 # bytes to MB
|
||||
ng = torch.cuda.device_count()
|
||||
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
|
||||
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
|
||||
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
|
||||
s = 'Using CUDA '
|
||||
for i in range(0, ng):
|
||||
if i == 1:
|
||||
s = ' ' * len(s)
|
||||
print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
|
||||
(s, i, x[i].name, x[i].total_memory / c))
|
||||
else:
|
||||
print('Using CPU')
|
||||
|
||||
print('') # skip a line
|
||||
return torch.device('cuda:0' if cuda else 'cpu')
|
||||
|
||||
|
||||
def time_synchronized():
|
||||
torch.cuda.synchronize() if torch.cuda.is_available() else None
|
||||
return time.time()
|
||||
|
||||
|
||||
def is_parallel(model):
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
|
||||
|
||||
def intersect_dicts(da, db, exclude=()):
|
||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||
|
||||
|
||||
def initialize_weights(model):
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t is nn.Conv2d:
|
||||
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif t is nn.BatchNorm2d:
|
||||
m.eps = 1e-3
|
||||
m.momentum = 0.03
|
||||
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||
m.inplace = True
|
||||
|
||||
|
||||
def find_modules(model, mclass=nn.Conv2d):
|
||||
# Finds layer indices matching module class 'mclass'
|
||||
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||
|
||||
|
||||
def sparsity(model):
|
||||
# Return global model sparsity
|
||||
a, b = 0., 0.
|
||||
for p in model.parameters():
|
||||
a += p.numel()
|
||||
b += (p == 0).sum()
|
||||
return b / a
|
||||
|
||||
|
||||
def prune(model, amount=0.3):
|
||||
# Prune model to requested global sparsity
|
||||
import torch.nn.utils.prune as prune
|
||||
print('Pruning model... ', end='')
|
||||
for name, m in model.named_modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||
prune.remove(m, 'weight') # make permanent
|
||||
print(' %.3g global sparsity' % sparsity(model))
|
||||
|
||||
|
||||
def fuse_conv_and_bn(conv, bn):
|
||||
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||
with torch.no_grad():
|
||||
# init
|
||||
fusedconv = nn.Conv2d(conv.in_channels,
|
||||
conv.out_channels,
|
||||
kernel_size=conv.kernel_size,
|
||||
stride=conv.stride,
|
||||
padding=conv.padding,
|
||||
bias=True).to(conv.weight.device)
|
||||
|
||||
# prepare filters
|
||||
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
||||
|
||||
# prepare spatial bias
|
||||
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||
|
||||
return fusedconv
|
||||
|
||||
|
||||
def model_info(model, verbose=False):
|
||||
# Plots a line-by-line description of a PyTorch model
|
||||
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||
if verbose:
|
||||
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||
for i, (name, p) in enumerate(model.named_parameters()):
|
||||
name = name.replace('module_list.', '')
|
||||
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||
|
||||
try: # FLOPS
|
||||
from thop import profile
|
||||
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
|
||||
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
|
||||
except:
|
||||
fs = ''
|
||||
|
||||
print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
|
||||
|
||||
|
||||
def load_classifier(name='resnet101', n=2):
|
||||
# Loads a pretrained model reshaped to n-class output
|
||||
model = models.__dict__[name](pretrained=True)
|
||||
|
||||
# Display model properties
|
||||
input_size = [3, 224, 224]
|
||||
input_space = 'RGB'
|
||||
input_range = [0, 1]
|
||||
mean = [0.485, 0.456, 0.406]
|
||||
std = [0.229, 0.224, 0.225]
|
||||
for x in [input_size, input_space, input_range, mean, std]:
|
||||
print(x + ' =', eval(x))
|
||||
|
||||
# Reshape output to n classes
|
||||
filters = model.fc.weight.shape[1]
|
||||
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
||||
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
||||
model.fc.out_features = n
|
||||
return model
|
||||
|
||||
|
||||
def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
|
||||
# scales img(bs,3,y,x) by ratio
|
||||
if ratio == 1.0:
|
||||
return img
|
||||
else:
|
||||
h, w = img.shape[2:]
|
||||
s = (int(h * ratio), int(w * ratio)) # new size
|
||||
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||
if not same_shape: # pad/crop img
|
||||
gs = 32 # (pixels) grid size
|
||||
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
||||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||
|
||||
|
||||
def copy_attr(a, b, include=(), exclude=()):
|
||||
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||
for k, v in b.__dict__.items():
|
||||
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||
continue
|
||||
else:
|
||||
setattr(a, k, v)
|
||||
|
||||
|
||||
class ModelEMA:
|
||||
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
||||
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
||||
This is intended to allow functionality like
|
||||
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||
A smoothed version of the weights is necessary for some training schemes to perform well.
|
||||
This class is sensitive where it is initialized in the sequence of model init,
|
||||
GPU assignment and distributed training wrappers.
|
||||
"""
|
||||
|
||||
def __init__(self, model, decay=0.9999, updates=0):
|
||||
# Create EMA
|
||||
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
||||
# if next(model.parameters()).device.type != 'cpu':
|
||||
# self.ema.half() # FP16 EMA
|
||||
self.updates = updates # number of EMA updates
|
||||
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
||||
for p in self.ema.parameters():
|
||||
p.requires_grad_(False)
|
||||
|
||||
def update(self, model):
|
||||
# Update EMA parameters
|
||||
with torch.no_grad():
|
||||
self.updates += 1
|
||||
d = self.decay(self.updates)
|
||||
|
||||
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
||||
for k, v in self.ema.state_dict().items():
|
||||
if v.dtype.is_floating_point:
|
||||
v *= d
|
||||
v += (1. - d) * msd[k].detach()
|
||||
|
||||
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||
# Update EMA attributes
|
||||
copy_attr(self.ema, model, include, exclude)
|
Loading…
Reference in New Issue