Update README.md
parent
974bdefd9a
commit
328ef928f7
55
README.md
55
README.md
|
@ -1 +1,54 @@
|
|||
# scaledYOLOv4
|
||||
# YOLOv4-tiny
|
||||
|
||||
This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using Darknet framwork.
|
||||
|
||||
## Installation
|
||||
|
||||
```
|
||||
# create the docker container, you can change the share memory size if you have more.
|
||||
nvidia-docker run --name yolov4_csp -it -v your_coco_path/:/coco/ -v your_code_path/:/yolo --shm-size=64g nvcr.io/nvidia/pytorch:20.02-py3
|
||||
|
||||
# install opencv
|
||||
apt update
|
||||
apt install libopencv-dev
|
||||
|
||||
# go to code folder
|
||||
cd /yolo
|
||||
make -j4
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
```
|
||||
# download yolov4-tiny.weights and put it in /yolo/weights/ folder.
|
||||
./darknet detector valid cfg/coco.data cfg/yolov4-tiny.cfg weights/yolov4-tiny.weights -out yolov4-tiny -gpus 0
|
||||
python valcoco.py ./results/yolov4-tiny.json
|
||||
```
|
||||
|
||||
You will get the results:
|
||||
```
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.220
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.421
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.207
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.102
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.263
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.309
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.352
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.379
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.456
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.529
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
```
|
||||
./darknet detector train cfg/coco.data cfg/yolov4-tiny.cfg -gpus 0 -dont_show
|
||||
```
|
||||
|
||||
For resume training:
|
||||
```
|
||||
# assume the checkpoint is stored in ./coco/.
|
||||
./darknet detector train cfg/coco.data cfg/yolov4-tiny.cfg coco/yolov4-tiny_last.weights -gpus 0 -dont_show
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue