# parameters nc: 80 # number of classes depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple # anchors anchors: - [13,17, 31,25, 24,51, 61,45] # P3/8 - [48,102, 119,96, 97,189, 217,184] # P4/16 - [171,384, 324,451, 616,618, 800,800] # P5/32 # csp-p5 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [32, 3, 1]], # 0 [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, BottleneckCSP, [64]], [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 [-1, 3, BottleneckCSP, [128]], [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 [-1, 15, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 [-1, 15, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 [-1, 7, BottleneckCSP, [1024]], # 10 ] # yolov4-p5 head # na = len(anchors[0]) head: [[-1, 1, SPPCSP, [512]], # 11 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [8, 1, Conv, [256, 1, 1]], # route backbone P4 [[-1, -2], 1, Concat, [1]], [-1, 3, BottleneckCSP2, [256]], # 16 [-1, 1, Conv, [128, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [6, 1, Conv, [128, 1, 1]], # route backbone P3 [[-1, -2], 1, Concat, [1]], [-1, 3, BottleneckCSP2, [128]], # 21 [-1, 1, Conv, [256, 3, 1]], [-2, 1, Conv, [256, 3, 2]], [[-1, 16], 1, Concat, [1]], # cat [-1, 3, BottleneckCSP2, [256]], # 25 [-1, 1, Conv, [512, 3, 1]], [-2, 1, Conv, [512, 3, 2]], [[-1, 11], 1, Concat, [1]], # cat [-1, 3, BottleneckCSP2, [512]], # 29 [-1, 1, Conv, [1024, 3, 1]], [[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]