deep-learningmachine-learningmlobject-detectionpytorchscaled-yolov4yoloyolov3yolov4yolov4-cspyolov4-largeyolov4-tiny
|
||
---|---|---|
cfg | ||
README.md | ||
valcoco.py |
README.md
YOLOv4-tiny
This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using Darknet framwork.
The implementation is supported by Darknet, just use it.
Installation
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov4_csp -it -v your_coco_path/:/coco/ -v your_code_path/:/yolo --shm-size=64g nvcr.io/nvidia/pytorch:20.02-py3
# install opencv
apt update
apt install libopencv-dev
# go to code folder
cd /yolo
make -j4
Testing
# download yolov4-tiny.weights and put it in /yolo/weights/ folder.
./darknet detector valid cfg/coco.data cfg/yolov4-tiny.cfg weights/yolov4-tiny.weights -out yolov4-tiny -gpus 0
python valcoco.py ./results/yolov4-tiny.json
You will get the results:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.220
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.421
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.207
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.102
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.263
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.352
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.379
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.456
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.529
Training
./darknet detector train cfg/coco.data cfg/yolov4-tiny.cfg -gpus 0 -dont_show
For resume training:
# assume the checkpoint is stored in ./coco/.
./darknet detector train cfg/coco.data cfg/yolov4-tiny.cfg coco/yolov4-tiny_last.weights -gpus 0 -dont_show
Citation
@InProceedings{Wang_2021_CVPR,
author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {13029-13038}
}