ScaledYOLOv4/models/yolov4-p5.yaml

54 lines
1.6 KiB
YAML

# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
# anchors
anchors:
- [13,17, 31,25, 24,51, 61,45] # P3/8
- [48,102, 119,96, 97,189, 217,184] # P4/16
- [171,384, 324,451, 616,618, 800,800] # P5/32
# csp-p5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [32, 3, 1]], # 0
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
[-1, 1, BottleneckCSP, [64]],
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
[-1, 15, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
[-1, 15, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
[-1, 7, BottleneckCSP, [1024]], # 10
]
# yolov4-p5 head
# na = len(anchors[0])
head:
[[-1, 1, SPPCSP, [512]], # 11
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[8, 1, Conv, [256, 1, 1]], # route backbone P4
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [256]], # 16
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[6, 1, Conv, [128, 1, 1]], # route backbone P3
[[-1, -2], 1, Concat, [1]],
[-1, 3, BottleneckCSP2, [128]], # 21
[-1, 1, Conv, [256, 3, 1]],
[-2, 1, Conv, [256, 3, 2]],
[[-1, 16], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [256]], # 25
[-1, 1, Conv, [512, 3, 1]],
[-2, 1, Conv, [512, 3, 2]],
[[-1, 11], 1, Concat, [1]], # cat
[-1, 3, BottleneckCSP2, [512]], # 29
[-1, 1, Conv, [1024, 3, 1]],
[[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]