2021-06-13 09:16:33 +08:00
[](https://github.com/NVlabs/SegFormer/blob/master/LICENSE)
2021-06-13 12:55:00 +08:00

2021-06-13 00:56:27 +08:00
2021-06-13 09:16:33 +08:00
# SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
2021-06-13 00:32:37 +08:00
2021-06-13 01:03:57 +08:00
<!--  -->
< div align = "center" >
2021-06-13 01:05:25 +08:00
< img src = "./resources/image.png" height = "400" >
2021-06-13 01:03:57 +08:00
< / div >
< p align = "center" >
Figure 1: Performance of SegFormer-B0 to SegFormer-B5.
< / p >
2021-06-13 09:16:33 +08:00
### [Project page](https://github.com/NVlabs/SegFormer) | [Paper](https://arxiv.org/abs/2105.15203) | [Demo (Youtube)](https://www.youtube.com/watch?v=J0MoRQzZe8U) | [Demo (Bilibili)](https://www.bilibili.com/video/BV1MV41147Ko/)
2021-06-13 01:03:57 +08:00
2021-06-13 09:16:33 +08:00
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.< br >
2021-06-13 09:23:06 +08:00
[Enze Xie ](https://xieenze.github.io/ ), [Wenhai Wang ](https://whai362.github.io/ ), [Zhiding Yu ](https://chrisding.github.io/ ), [Anima Anandkumar ](http://tensorlab.cms.caltech.edu/users/anima/ ), [Jose M. Alvarez ](https://rsu.data61.csiro.au/people/jalvarez/ ), and [Ping Luo ](http://luoping.me/ ).< br >
2021-06-13 09:16:33 +08:00
Technical Report 2021.
This repository contains the PyTorch training/evaluation code and the pretrained models for [SegFormer ](https://arxiv.org/abs/2105.15203 ).
SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1.
We use [MMSegmentation v0.13.0 ](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0 ) as the codebase.
2021-06-13 00:32:37 +08:00
2021-06-13 09:16:33 +08:00
## Installation
2021-06-13 00:56:27 +08:00
For install and data preparation, please refer to the guidelines in [MMSegmentation v0.13.0 ](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0 ).
2021-06-13 00:32:37 +08:00
2021-06-13 01:20:49 +08:00
Other requirements:
```pip install timm==0.3.2```
2021-06-13 00:32:37 +08:00
2021-06-21 00:18:11 +08:00
An example (works for me): ```CUDA 10.1``` and ```pytorch 1.7.1```
```
pip install torchvision==0.8.2
pip install timm==0.3.2
pip install mmcv-full==1.2.7
pip install opencv-python==4.5.1.48
2021-06-21 00:18:43 +08:00
cd SegFormer & & pip install -e . --user
2021-06-21 00:18:11 +08:00
```
2021-06-13 00:56:27 +08:00
## Evaluation
2021-06-13 00:32:37 +08:00
2021-06-13 00:56:27 +08:00
Download [trained weights ](https://drive.google.com/drive/folders/1GAku0G0iR9DsBxCbfENWMJ27c5lYUeQA?usp=sharing ).
2021-06-13 00:32:37 +08:00
2021-06-13 00:56:27 +08:00
Example: evaluate ```SegFormer-B1``` on ```ADE20K```:
2021-06-13 00:32:37 +08:00
2021-06-13 00:56:27 +08:00
```
2021-06-13 09:16:33 +08:00
# Single-gpu testing
2021-06-13 00:56:27 +08:00
python tools/test.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file
2021-06-13 09:16:33 +08:00
# Multi-gpu testing
2021-06-13 00:56:27 +08:00
./tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file < GPU_NUM >
2021-06-13 09:16:33 +08:00
# Multi-gpu, multi-scale testing
2021-06-13 00:56:27 +08:00
tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file < GPU_NUM > --aug-test
```
## Training
2021-06-13 00:32:37 +08:00
2021-06-13 01:22:32 +08:00
Download [weights ](https://drive.google.com/drive/folders/1b7bwrInTW4VLEm27YawHOAMSMikga2Ia?usp=sharing ) pretrained on ImageNet-1K, and put them in a folder ```pretrained/```.
2021-06-13 00:32:37 +08:00
2021-06-13 00:56:27 +08:00
Example: train ```SegFormer-B1``` on ```ADE20K```:
2021-06-13 00:32:37 +08:00
```
2021-06-13 09:16:33 +08:00
# Single-gpu training
2021-06-13 00:56:27 +08:00
python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py
2021-06-13 09:16:33 +08:00
# Multi-gpu training
2021-06-13 00:56:27 +08:00
./tools/dist_train.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py < GPU_NUM >
2021-06-13 00:32:37 +08:00
```
2021-06-13 00:56:27 +08:00
## License
Please check the LICENSE file. SegFormer may be used non-commercially, meaning for research or
evaluation purposes only. For business inquiries, please contact
[researchinquiries@nvidia.com ](mailto:researchinquiries@nvidia.com ).
2021-06-13 09:16:33 +08:00
## Citation
2021-06-13 00:56:27 +08:00
```
@article {xie2021segformer,
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
journal={arXiv preprint arXiv:2105.15203},
year={2021}
}
```