mirror of https://github.com/NVlabs/SegFormer.git
update readme
parent
f6af29ff18
commit
82ea508d6b
33
README.md
33
README.md
|
@ -1,11 +1,8 @@
|
|||
[](https://github.com/NVlabs/SegFormer/blob/master/LICENSE)
|
||||

|
||||
|
||||
# SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
|
||||
|
||||
This repository contains PyTorch evaluation code, training code and pretrained models for [SegFormer](https://arxiv.org/abs/2105.15203).
|
||||
|
||||
SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1.
|
||||
|
||||
We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0) as the codebase.
|
||||
|
||||
<!--  -->
|
||||
<div align="center">
|
||||
<img src="./resources/image.png" height="400">
|
||||
|
@ -14,9 +11,19 @@ We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tre
|
|||
Figure 1: Performance of SegFormer-B0 to SegFormer-B5.
|
||||
</p>
|
||||
|
||||
### [Project page](https://github.com/NVlabs/SegFormer) | [Paper](https://arxiv.org/abs/2105.15203) | [Demo (Youtube)](https://www.youtube.com/watch?v=J0MoRQzZe8U) | [Demo (Bilibili)](https://www.bilibili.com/video/BV1MV41147Ko/)
|
||||
|
||||
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.<br>
|
||||
[Enze Xie](https://xieenze.github.io/), [Wenhai Wang](https://whai362.github.io/), [Zhiding Yu](https://chrisding.github.io/), [Anima Anandkumar](https://tensorlab.cms.caltech.edu/users/anima/), [Jose M. Alvarez](https://rsu.data61.csiro.au/people/jalvarez/), and [Ping Luo](http://luoping.me/).<br>
|
||||
Technical Report 2021.
|
||||
|
||||
## Install
|
||||
This repository contains the PyTorch training/evaluation code and the pretrained models for [SegFormer](https://arxiv.org/abs/2105.15203).
|
||||
|
||||
SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1.
|
||||
|
||||
We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0) as the codebase.
|
||||
|
||||
## Installation
|
||||
|
||||
For install and data preparation, please refer to the guidelines in [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0).
|
||||
|
||||
|
@ -30,13 +37,13 @@ Download [trained weights](https://drive.google.com/drive/folders/1GAku0G0iR9DsB
|
|||
Example: evaluate ```SegFormer-B1``` on ```ADE20K```:
|
||||
|
||||
```
|
||||
# single-gpu testing
|
||||
# Single-gpu testing
|
||||
python tools/test.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file
|
||||
|
||||
# multi-gpu testing
|
||||
# Multi-gpu testing
|
||||
./tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file <GPU_NUM>
|
||||
|
||||
# multi-gpu, multi-scale testing
|
||||
# Multi-gpu, multi-scale testing
|
||||
tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file <GPU_NUM> --aug-test
|
||||
```
|
||||
|
||||
|
@ -47,10 +54,10 @@ Download [weights](https://drive.google.com/drive/folders/1b7bwrInTW4VLEm27YawHO
|
|||
Example: train ```SegFormer-B1``` on ```ADE20K```:
|
||||
|
||||
```
|
||||
# single-gpu training
|
||||
# Single-gpu training
|
||||
python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py
|
||||
|
||||
# multi-gpu training
|
||||
# Multi-gpu training
|
||||
./tools/dist_train.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py <GPU_NUM>
|
||||
```
|
||||
|
||||
|
@ -60,7 +67,7 @@ evaluation purposes only. For business inquiries, please contact
|
|||
[researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com).
|
||||
|
||||
|
||||
## Citing SegFormer
|
||||
## Citation
|
||||
```
|
||||
@article{xie2021segformer,
|
||||
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 91 KiB After Width: | Height: | Size: 65 KiB |
Loading…
Reference in New Issue