[](https://github.com/NVlabs/SegFormer/blob/master/LICENSE)

# SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
Figure 1: Performance of SegFormer-B0 to SegFormer-B5.
### [Project page](https://github.com/NVlabs/SegFormer) | [Paper](https://arxiv.org/abs/2105.15203) | [Demo (Youtube)](https://www.youtube.com/watch?v=J0MoRQzZe8U) | [Demo (Bilibili)](https://www.bilibili.com/video/BV1MV41147Ko/)
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.
[Enze Xie](https://xieenze.github.io/), [Wenhai Wang](https://whai362.github.io/), [Zhiding Yu](https://chrisding.github.io/), [Anima Anandkumar](http://tensorlab.cms.caltech.edu/users/anima/), [Jose M. Alvarez](https://rsu.data61.csiro.au/people/jalvarez/), and [Ping Luo](http://luoping.me/).
Technical Report 2021.
This repository contains the PyTorch training/evaluation code and the pretrained models for [SegFormer](https://arxiv.org/abs/2105.15203).
SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1.
We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0) as the codebase.
## Installation
For install and data preparation, please refer to the guidelines in [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0).
Other requirements:
```pip install timm==0.3.2```
## Evaluation
Download [trained weights](https://drive.google.com/drive/folders/1GAku0G0iR9DsBxCbfENWMJ27c5lYUeQA?usp=sharing).
Example: evaluate ```SegFormer-B1``` on ```ADE20K```:
```
# Single-gpu testing
python tools/test.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file
# Multi-gpu testing
./tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file
# Multi-gpu, multi-scale testing
tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file --aug-test
```
## Training
Download [weights](https://drive.google.com/drive/folders/1b7bwrInTW4VLEm27YawHOAMSMikga2Ia?usp=sharing) pretrained on ImageNet-1K, and put them in a folder ```pretrained/```.
Example: train ```SegFormer-B1``` on ```ADE20K```:
```
# Single-gpu training
python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py
# Multi-gpu training
./tools/dist_train.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py
```
## License
Please check the LICENSE file. SegFormer may be used non-commercially, meaning for research or
evaluation purposes only. For business inquiries, please contact
[researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com).
## Citation
```
@article{xie2021segformer,
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
journal={arXiv preprint arXiv:2105.15203},
year={2021}
}
```