[![NVIDIA Source Code License](https://img.shields.io/badge/license-NSCL-blue.svg)](https://github.com/NVlabs/SegFormer/blob/master/LICENSE) ![Python 3.8](https://img.shields.io/badge/python-3.8-green.svg) # SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

Figure 1: Performance of SegFormer-B0 to SegFormer-B5.

### [Project page](https://github.com/NVlabs/SegFormer) | [Paper](https://arxiv.org/abs/2105.15203) | [Demo (Youtube)](https://www.youtube.com/watch?v=J0MoRQzZe8U) | [Demo (Bilibili)](https://www.bilibili.com/video/BV1MV41147Ko/) SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.
[Enze Xie](https://xieenze.github.io/), [Wenhai Wang](https://whai362.github.io/), [Zhiding Yu](https://chrisding.github.io/), [Anima Anandkumar](http://tensorlab.cms.caltech.edu/users/anima/), [Jose M. Alvarez](https://rsu.data61.csiro.au/people/jalvarez/), and [Ping Luo](http://luoping.me/).
NeurIPS 2021. This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for [SegFormer](https://arxiv.org/abs/2105.15203). SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1. We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0) as the codebase. 🔥🔥 SegFormer is on [MMSegmentation](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segformer). 🔥🔥 ## Installation For install and data preparation, please refer to the guidelines in [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0). Other requirements: ```pip install timm==0.3.2``` An example (works for me): ```CUDA 10.1``` and ```pytorch 1.7.1``` ``` pip install torchvision==0.8.2 pip install timm==0.3.2 pip install mmcv-full==1.2.7 pip install opencv-python==4.5.1.48 cd SegFormer && pip install -e . --user ``` ## Evaluation Download `trained weights`. [google drive](https://drive.google.com/drive/folders/1GAku0G0iR9DsBxCbfENWMJ27c5lYUeQA?usp=sharing) | [onedrive](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/xieenze_connect_hku_hk/Ept_oetyUGFCsZTKiL_90kUBy5jmPV65O5rJInsnRCDWJQ?e=CvGohw) Example: evaluate ```SegFormer-B1``` on ```ADE20K```: ``` # Single-gpu testing python tools/test.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file # Multi-gpu testing ./tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file # Multi-gpu, multi-scale testing tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file --aug-test ``` ## Training Download `weights` ( [google drive](https://drive.google.com/drive/folders/1b7bwrInTW4VLEm27YawHOAMSMikga2Ia?usp=sharing) | [onedrive](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/xieenze_connect_hku_hk/EvOn3l1WyM5JpnMQFSEO5b8B7vrHw9kDaJGII-3N9KNhrg?e=cpydzZ) ) pretrained on ImageNet-1K, and put them in a folder ```pretrained/```. Example: train ```SegFormer-B1``` on ```ADE20K```: ``` # Single-gpu training python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py # Multi-gpu training ./tools/dist_train.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py ``` ## Visualize Here is a demo script to test a single image. More details refer to [MMSegmentation's Doc](https://mmsegmentation.readthedocs.io/en/latest/get_started.html). ```shell python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${DEVICE_NAME}] [--palette-thr ${PALETTE}] ``` Example: visualize ```SegFormer-B1``` on ```CityScapes```: ```shell python demo/image_demo.py demo/demo.png local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py \ /path/to/checkpoint_file --device cuda:0 --palette cityscapes ``` ## License Please check the LICENSE file. SegFormer may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com). ## Citation ``` @article{xie2021segformer, title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping}, journal={arXiv preprint arXiv:2105.15203}, year={2021} } ```