import numpy as np import torch.nn as nn import torch from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from collections import OrderedDict from mmseg.ops import resize from ..builder import HEADS from .decode_head import BaseDecodeHead from mmseg.models.utils import * import attr from IPython import embed class MLP(nn.Module): """ Linear Embedding """ def __init__(self, input_dim=2048, embed_dim=768): super().__init__() self.proj = nn.Linear(input_dim, embed_dim) def forward(self, x): x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x @HEADS.register_module() class SegFormerHead(BaseDecodeHead): """ SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers """ def __init__(self, feature_strides, **kwargs): super(SegFormerHead, self).__init__(input_transform='multiple_select', **kwargs) assert len(feature_strides) == len(self.in_channels) assert min(feature_strides) == feature_strides[0] self.feature_strides = feature_strides c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels decoder_params = kwargs['decoder_params'] embedding_dim = decoder_params['embed_dim'] self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim) self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim) self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim) self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim) self.linear_fuse = ConvModule( in_channels=embedding_dim*4, out_channels=embedding_dim, kernel_size=1, norm_cfg=dict(type='SyncBN', requires_grad=True) ) self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1) def forward(self, inputs): x = self._transform_inputs(inputs) # len=4, 1/4,1/8,1/16,1/32 c1, c2, c3, c4 = x ############## MLP decoder on C1-C4 ########### n, _, h, w = c4.shape _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]) _c4 = resize(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False) _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]) _c3 = resize(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False) _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]) _c2 = resize(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False) _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]) _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) x = self.dropout(_c) x = self.linear_pred(x) return x