Panoptic Feature Pyramid Networks
Introduction
[ALGORITHM]
@article{Kirillov_2019,
title={Panoptic Feature Pyramid Networks},
ISBN={9781728132938},
url={http://dx.doi.org/10.1109/CVPR.2019.00656},
DOI={10.1109/cvpr.2019.00656},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
publisher={IEEE},
author={Kirillov, Alexander and Girshick, Ross and He, Kaiming and Dollar, Piotr},
year={2019},
month={Jun}
}
Results and models
Cityscapes
Method |
Backbone |
Crop Size |
Lr schd |
Mem (GB) |
Inf time (fps) |
mIoU |
mIoU(ms+flip) |
download |
FPN |
R-50 |
512x1024 |
80000 |
2.8 |
13.54 |
74.52 |
76.08 |
model | log |
FPN |
R-101 |
512x1024 |
80000 |
3.9 |
10.29 |
75.80 |
77.40 |
model | log |
ADE20K
Method |
Backbone |
Crop Size |
Lr schd |
Mem (GB) |
Inf time (fps) |
mIoU |
mIoU(ms+flip) |
download |
FPN |
R-50 |
512x512 |
160000 |
4.9 |
55.77 |
37.49 |
39.09 |
model | log |
FPN |
R-101 |
512x512 |
160000 |
5.9 |
40.58 |
39.35 |
40.72 |
model | log |