mirror of https://github.com/NVlabs/SegFormer.git
49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
# model settings
|
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
|
model = dict(
|
|
type='EncoderDecoder',
|
|
pretrained='open-mmlab://resnet50_v1c',
|
|
backbone=dict(
|
|
type='ResNetV1c',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
dilations=(1, 1, 2, 4),
|
|
strides=(1, 2, 1, 1),
|
|
norm_cfg=norm_cfg,
|
|
norm_eval=False,
|
|
style='pytorch',
|
|
contract_dilation=True),
|
|
decode_head=dict(
|
|
type='EncHead',
|
|
in_channels=[512, 1024, 2048],
|
|
in_index=(1, 2, 3),
|
|
channels=512,
|
|
num_codes=32,
|
|
use_se_loss=True,
|
|
add_lateral=False,
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
|
loss_se_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
|
auxiliary_head=dict(
|
|
type='FCNHead',
|
|
in_channels=1024,
|
|
in_index=2,
|
|
channels=256,
|
|
num_convs=1,
|
|
concat_input=False,
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
|
# model training and testing settings
|
|
train_cfg=dict(),
|
|
test_cfg=dict(mode='whole'))
|