mirror of https://github.com/NVlabs/SegFormer.git
37 lines
1.0 KiB
Python
37 lines
1.0 KiB
Python
# model settings
|
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
|
model = dict(
|
|
type='EncoderDecoder',
|
|
pretrained='open-mmlab://resnet50_v1c',
|
|
backbone=dict(
|
|
type='ResNetV1c',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
dilations=(1, 1, 1, 1),
|
|
strides=(1, 2, 2, 2),
|
|
norm_cfg=norm_cfg,
|
|
norm_eval=False,
|
|
style='pytorch',
|
|
contract_dilation=True),
|
|
neck=dict(
|
|
type='FPN',
|
|
in_channels=[256, 512, 1024, 2048],
|
|
out_channels=256,
|
|
num_outs=4),
|
|
decode_head=dict(
|
|
type='FPNHead',
|
|
in_channels=[256, 256, 256, 256],
|
|
in_index=[0, 1, 2, 3],
|
|
feature_strides=[4, 8, 16, 32],
|
|
channels=128,
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
|
# model training and testing settings
|
|
train_cfg=dict(),
|
|
test_cfg=dict(mode='whole'))
|