Segment-Everything-Everywhe.../assets/readmes/DATASET.md

113 lines
5.2 KiB
Markdown
Raw Permalink Normal View History

2023-10-05 07:45:41 +08:00
# Preparing Dataset
2023-10-05 07:48:31 +08:00
:bangbang: The dataset preparation contains many details, welcome community contribution to fix any bug, Thanks!
2023-10-05 07:45:41 +08:00
Our dataloader follows [Detectron2](https://github.com/facebookresearch/detectron2) that contains: <br/>
(1) [A dataset registrator](datasets/registration) <br/>
(2) [A dataset mapper](datasets/dataset_mappers) <br/>
We modify the dataset registration and mapper for custom datasets.
## Training Dataset
We assume all the datasets are stored under:
```
.xdecoder_data
```
### COCO (SEEM & X-Decoder)
```sh
# Prepare panoptic_train2017, panoptic_semseg_train2017 exactly the same as [Mask2Fomer](https://github.com/facebookresearch/Mask2Former/tree/main/datasets)
# (SEEM & X-Decoder) Download additional logistic and custom annotation files to .xdecoder_data/coco/annotations
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/caption_class_similarity.pth
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/captions_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/grounding_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/panoptic_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/refcocog_umd_val.json
wget https://github.com/peteanderson80/coco-caption/blob/master/annotations/captions_val2014.json
# (SEEM) Download LVIS annotations for mask preparation
wget https://huggingface.co/xdecoder/SEEM/resolve/main/coco_train2017_filtrefgumdval_lvis.json
```
After dataset preparation, the dataset structure would be:
```
.xdecoder_data
└── coco/
├── train2017/
├── val2017/
├── panoptic_train2017/
├── panoptic_semseg_train2017/
├── panoptic_val2017/
├── panoptic_semseg_val2017/
└── annotations/
├── refcocog_umd_val.json
├── captions_val2014.json
├── panoptic_val2017.json
├── caption_class_similarity.pth
├── panoptic_train2017_filtrefgumdval_filtvlp.json
└── grounding_train2017_filtrefgumdval_filtvlp.json
└── lvis/
└── coco_train2017_filtrefgumdval_lvis.json
```
#### 4M Image Text Pairs (X-Decoder)
We follow the exact data preparation for the image text pairs data with [ViLT](https://github.com/dandelin/ViLT/blob/master/DATA.md).
```
# The pretrained arrow file are put under .xdecoder_data/pretrain_arrows_code224 with the following list of files.
["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] + ["code224_vg.arrow"] + [f"code224_sbu_{i}.arrow" for i in range(9)] + [f"code224_conceptual_caption_train_{i}.arrow" for i in range(31)]
# ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] are originated from ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] with deletion of coco val2017 overlapped images to avoid information leakage.
```
To get quick started:
```sh
# Download coco karparthy test set (we hack the training data to be coco_caption_karpathy_test.arrow only for quick start in the codebase)
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/coco_caption_karpathy_test.arrow
```
After dataset preparation, the dataset structure would be:
```
.xdecoder_data
└── pretrain_arrows_code224/
├── coco_caption_karpathy_test.arrow
├── *filtcoco2017val_caption_karpathy_train.arrow
├── ...
├── *code224_vg.arrow
├── *code224_sbu_0.arrow
├── ...
├── *code224_conceptual_caption_train_0.arrow
└── ...
* Those datasets are optional for debugging the pipeline. ! NEED to add back when you are training the model.
```
***NOTE:***
<img src="https://user-images.githubusercontent.com/11957155/226159078-7f817452-76f8-44f4-af7a-9f13f3e02554.png" width="500">
There are overlap between COCO2017, COCO-Karpathy and REF-COCO dataset, and ref-coco is all overlapped with the COCO2017 training data, we have exclude the refcocog-umd validation, coco-karpathy test split during training.
## Evaluation Dataset
### RefCOCO (SEEM & X-Decoder)
2023-10-05 07:46:20 +08:00
Please refer to COCO Preparation on [line](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/v1.0/assets/readmes/DATASET.md#coco-seem--x-decoder).
2023-10-05 07:45:41 +08:00
### ADE20K, Cityscapes (X-Decoder)
Please Refer to [Mask2Former](https://github.com/facebookresearch/Mask2Former/tree/main/datasets).
### BDD100K (X-Decoder)
Please download the 10k split of BDD100k at https://doc.bdd100k.com/download.html#id1
### PascalVOC and all other interactive evaluation datasets (SEEM)
Please follow the instruction on [RITM](https://github.com/SamsungLabs/ritm_interactive_segmentation)
After dataset preparation, the dataset structure would be:
```
.xdecoder_data
└── PascalVOC/
├── Annotations/
├── ImageSets
├── JPEGImages/
├── SegmentationClass/
└── SegmentationObject/
```