92 lines
3.0 KiB
Python
92 lines
3.0 KiB
Python
|
# --------------------------------------------------------
|
||
|
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
||
|
# Copyright (c) 2022 Microsoft
|
||
|
# Licensed under The MIT License [see LICENSE for details]
|
||
|
# Written by Xueyan Zou (xueyan@cs.wisc.edu)
|
||
|
# --------------------------------------------------------
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import logging
|
||
|
|
||
|
pth = '/'.join(sys.path[0].split('/')[:-1])
|
||
|
sys.path.insert(0, pth)
|
||
|
|
||
|
from PIL import Image
|
||
|
import numpy as np
|
||
|
np.random.seed(1)
|
||
|
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
|
||
|
from utils.arguments import load_opt_command
|
||
|
|
||
|
from detectron2.data import MetadataCatalog
|
||
|
from detectron2.utils.colormap import random_color
|
||
|
from modeling.BaseModel import BaseModel
|
||
|
from modeling import build_model
|
||
|
from utils.visualizer import Visualizer
|
||
|
from utils.distributed import init_distributed
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def main(args=None):
|
||
|
'''
|
||
|
Main execution point for PyLearn.
|
||
|
'''
|
||
|
opt, cmdline_args = load_opt_command(args)
|
||
|
if cmdline_args.user_dir:
|
||
|
absolute_user_dir = os.path.abspath(cmdline_args.user_dir)
|
||
|
opt['base_path'] = absolute_user_dir
|
||
|
opt = init_distributed(opt)
|
||
|
|
||
|
# META DATA
|
||
|
pretrained_pth = os.path.join(opt['RESUME_FROM'])
|
||
|
output_root = './output'
|
||
|
image_pth = 'inference/images/animals.png'
|
||
|
|
||
|
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda()
|
||
|
|
||
|
t = []
|
||
|
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
|
||
|
transform = transforms.Compose(t)
|
||
|
|
||
|
stuff_classes = ['zebra','antelope','giraffe','ostrich','sky','water','grass','sand','tree']
|
||
|
stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int).tolist() for _ in range(len(stuff_classes))]
|
||
|
stuff_dataset_id_to_contiguous_id = {x:x for x in range(len(stuff_classes))}
|
||
|
|
||
|
MetadataCatalog.get("demo").set(
|
||
|
stuff_colors=stuff_colors,
|
||
|
stuff_classes=stuff_classes,
|
||
|
stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
|
||
|
)
|
||
|
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(stuff_classes + ["background"], is_eval=True)
|
||
|
metadata = MetadataCatalog.get('demo')
|
||
|
model.model.metadata = metadata
|
||
|
model.model.sem_seg_head.num_classes = len(stuff_classes)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
image_ori = Image.open(image_pth).convert("RGB")
|
||
|
width = image_ori.size[0]
|
||
|
height = image_ori.size[1]
|
||
|
image = transform(image_ori)
|
||
|
image = np.asarray(image)
|
||
|
image_ori = np.asarray(image_ori)
|
||
|
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
|
||
|
|
||
|
batch_inputs = [{'image': images, 'height': height, 'width': width}]
|
||
|
outputs = model.forward(batch_inputs)
|
||
|
visual = Visualizer(image_ori, metadata=metadata)
|
||
|
|
||
|
sem_seg = outputs[-1]['sem_seg'].max(0)[1]
|
||
|
demo = visual.draw_sem_seg(sem_seg.cpu(), alpha=0.5) # rgb Image
|
||
|
|
||
|
if not os.path.exists(output_root):
|
||
|
os.makedirs(output_root)
|
||
|
demo.save(os.path.join(output_root, 'sem.png'))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|
||
|
sys.exit(0)
|