diff --git a/assets/readmes/DATASET.md b/assets/readmes/DATASET.md index e69de29..d86c0f6 100644 --- a/assets/readmes/DATASET.md +++ b/assets/readmes/DATASET.md @@ -0,0 +1,109 @@ +# Preparing Dataset +Our dataloader follows [Detectron2](https://github.com/facebookresearch/detectron2) that contains:
+(1) [A dataset registrator](datasets/registration)
+(2) [A dataset mapper](datasets/dataset_mappers)
+We modify the dataset registration and mapper for custom datasets. + +## Training Dataset +We assume all the datasets are stored under: +``` +.xdecoder_data +``` + +### COCO (SEEM & X-Decoder) + +```sh +# Prepare panoptic_train2017, panoptic_semseg_train2017 exactly the same as [Mask2Fomer](https://github.com/facebookresearch/Mask2Former/tree/main/datasets) + +# (SEEM & X-Decoder) Download additional logistic and custom annotation files to .xdecoder_data/coco/annotations +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/caption_class_similarity.pth +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/captions_train2017_filtrefgumdval_filtvlp.json +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/grounding_train2017_filtrefgumdval_filtvlp.json +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/panoptic_train2017_filtrefgumdval_filtvlp.json +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/refcocog_umd_val.json +wget https://github.com/peteanderson80/coco-caption/blob/master/annotations/captions_val2014.json + +# (SEEM) Download LVIS annotations for mask preparation +wget https://huggingface.co/xdecoder/SEEM/resolve/main/coco_train2017_filtrefgumdval_lvis.json +``` + +After dataset preparation, the dataset structure would be: +``` +.xdecoder_data +└── coco/ + ├── train2017/ + ├── val2017/ + ├── panoptic_train2017/ + ├── panoptic_semseg_train2017/ + ├── panoptic_val2017/ + ├── panoptic_semseg_val2017/ + └── annotations/ + ├── refcocog_umd_val.json + ├── captions_val2014.json + ├── panoptic_val2017.json + ├── caption_class_similarity.pth + ├── panoptic_train2017_filtrefgumdval_filtvlp.json + └── grounding_train2017_filtrefgumdval_filtvlp.json +└── lvis/ + └── coco_train2017_filtrefgumdval_lvis.json +``` + +#### 4M Image Text Pairs (X-Decoder) +We follow the exact data preparation for the image text pairs data with [ViLT](https://github.com/dandelin/ViLT/blob/master/DATA.md). +``` +# The pretrained arrow file are put under .xdecoder_data/pretrain_arrows_code224 with the following list of files. +["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] + ["code224_vg.arrow"] + [f"code224_sbu_{i}.arrow" for i in range(9)] + [f"code224_conceptual_caption_train_{i}.arrow" for i in range(31)] +# ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] are originated from ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] with deletion of coco val2017 overlapped images to avoid information leakage. +``` + +To get quick started: +```sh +# Download coco karparthy test set (we hack the training data to be coco_caption_karpathy_test.arrow only for quick start in the codebase) +wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/coco_caption_karpathy_test.arrow +``` + +After dataset preparation, the dataset structure would be: +``` +.xdecoder_data +└── pretrain_arrows_code224/ + ├── coco_caption_karpathy_test.arrow + ├── *filtcoco2017val_caption_karpathy_train.arrow + ├── ... + ├── *code224_vg.arrow + ├── *code224_sbu_0.arrow + ├── ... + ├── *code224_conceptual_caption_train_0.arrow + └── ... +* Those datasets are optional for debugging the pipeline. ! NEED to add back when you are training the model. +``` + +***NOTE:*** + + +There are overlap between COCO2017, COCO-Karpathy and REF-COCO dataset, and ref-coco is all overlapped with the COCO2017 training data, we have exclude the refcocog-umd validation, coco-karpathy test split during training. + +## Evaluation Dataset + +### RefCOCO (SEEM & X-Decoder) +Please refer to COCO Preparation on [line](). + +### ADE20K, Cityscapes (X-Decoder) +Please Refer to [Mask2Former](https://github.com/facebookresearch/Mask2Former/tree/main/datasets). + +### BDD100K (X-Decoder) +Please download the 10k split of BDD100k at https://doc.bdd100k.com/download.html#id1 + +### PascalVOC and all other interactive evaluation datasets (SEEM) +Please follow the instruction on [RITM](https://github.com/SamsungLabs/ritm_interactive_segmentation) + +After dataset preparation, the dataset structure would be: +``` +.xdecoder_data +└── PascalVOC/ + ├── Annotations/ + ├── ImageSets + ├── JPEGImages/ + ├── SegmentationClass/ + └── SegmentationObject/ +``` +