Update README.md
parent
4e58f99806
commit
66bece668e
39
README.md
39
README.md
|
@ -6,8 +6,19 @@ We introduce **SEEM** that can **S**egment **E**verything **E**verywhere with **
|
|||
|
||||
by [Xueyan Zou*](https://maureenzou.github.io/), [Jianwei Yang*](https://jwyang.github.io/), [Hao Zhang*](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=en), [Feng Li*](https://fengli-ust.github.io/), [Linjie Li](https://scholar.google.com/citations?user=WR875gYAAAAJ&hl=en), [Jianfeng Wang](http://jianfengwang.me/), [Lijuan Wang](https://scholar.google.com/citations?user=cDcWXuIAAAAJ&hl=zh-CN), [Jianfeng Gao^](https://www.microsoft.com/en-us/research/people/jfgao/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fjfgao%2F), [Yong Jae Lee^](https://pages.cs.wisc.edu/~yongjaelee/), in **NeurIPS 2023**.
|
||||
|
||||
A brief introduction of all the generic and interactive segmentation tasks we can do!
|
||||
|
||||

|
||||
A brief introduction of all the generic and interactive segmentation tasks we can do.
|
||||
|
||||
## :rocket: Updates
|
||||
* **[2023.10.04]** We are excited to release :white_check_mark: [training/evaluation/demo code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), :white_check_mark: [new checkpoints](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), and :white_check_mark: [comprehensive readmes](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog) for ***both X-Decoder and SEEM***!
|
||||
* **[2023.09.25]** Our work has been accepted to NeurIPS 2023!
|
||||
* **[2023.07.27]** We are excited to release our [X-Decoder](https://github.com/microsoft/X-Decoder) training code! We will release its descendant SEEM training code very soon!
|
||||
* **[2023.07.10]** We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. Code and checkpoint are available!
|
||||
* **[2023.05.02]** We have released the [SEEM Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focall_v1.pt) and [X-Decoder Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focall_last.pt) checkpoints and [configs](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/main/demo_code/configs/seem/seem_focall_lang.yaml)!
|
||||
* **[2023.04.28]** We have updated the [ArXiv](https://arxiv.org/pdf/2304.06718.pdf) that shows *better interactive segmentation results than SAM*, which trained on x50 more data than us!
|
||||
* **[2023.04.26]** We have released the [Demo Code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/tree/main/demo_code) and [SEEM-Tiny Checkpoint](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focalt_v1.pt)! Please try the One-Line Started!
|
||||
* **[2023.04.20]** SEEM Referring Video Segmentation is out! Please try the [Video Demo](https://huggingface.co/spaces/xdecoder/SEEM) and take a look at the [NERF examples](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once#tulip-nerf-examples).
|
||||
|
||||
## :bookmark_tabs: Catalog
|
||||
We release the following contents for **both SEEM and X-Decoder**:exclamation:
|
||||
|
@ -45,19 +56,10 @@ git clone git@github.com:UX-Decoder/Segment-Everything-Everywhere-All-At-Once.gi
|
|||
**SEEM_v0:** Supporting Single Interactive object training and inference <br>
|
||||
**SEEM_v1:** Supporting Multiple Interactive objects training and inference
|
||||
|
||||
## :rocket: Updates
|
||||
* **[2023.10.04]** We are excited to release :white_check_mark: [training/evaluation/demo code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), :white_check_mark: [new checkpoints](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), and :white_check_mark: [comprehensive readmes](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog) for ***both X-Decoder and SEEM***!
|
||||
* **[2023.09.25]** Our work has been accepted to NeurIPS 2023!
|
||||
* **[2023.07.27]** We are excited to release our [X-Decoder](https://github.com/microsoft/X-Decoder) training code! We will release its descendant SEEM training code very soon!
|
||||
* **[2023.07.10]** We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. Code and checkpoint are available!
|
||||
* **[2023.05.02]** We have released the [SEEM Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focall_v1.pt) and [X-Decoder Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focall_last.pt) checkpoints and [configs](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/main/demo_code/configs/seem/seem_focall_lang.yaml)!
|
||||
* **[2023.04.28]** We have updated the [ArXiv](https://arxiv.org/pdf/2304.06718.pdf) that shows *better interactive segmentation results than SAM*, which trained on x50 more data than us!
|
||||
* **[2023.04.26]** We have released the [Demo Code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/tree/main/demo_code) and [SEEM-Tiny Checkpoint](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focalt_v1.pt)! Please try the One-Line Started!
|
||||
* **[2023.04.20]** SEEM Referring Video Segmentation is out! Please try the [Video Demo](https://huggingface.co/spaces/xdecoder/SEEM) and take a look at the [NERF examples](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once#tulip-nerf-examples).
|
||||
<p float="left">
|
||||
<img src="https://user-images.githubusercontent.com/11957155/233255289-35c0c1e2-35f7-48e4-a7e9-68da50c839d3.gif" width="400" />
|
||||
<img src="https://user-images.githubusercontent.com/11957155/233526415-a0a44963-19a3-4e56-965a-afaa598e6127.gif" width="400" />
|
||||
</p>
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/11957155/233255289-35c0c1e2-35f7-48e4-a7e9-68da50c839d3.gif" width="500" />
|
||||
<img src="https://user-images.githubusercontent.com/11957155/233526415-a0a44963-19a3-4e56-965a-afaa598e6127.gif" width="500" />
|
||||
</div>
|
||||
|
||||
:fire: **Related projects:**
|
||||
|
||||
|
@ -96,10 +98,11 @@ An example of Transformers. The referred image is the truck form of Optimus Prim
|
|||
|
||||
## :tulip: NERF Examples
|
||||
* Inspired by the example in [SA3D](https://github.com/Jumpat/SegmentAnythingin3D), we tried SEEM on NERF Examples and works well :)
|
||||
<p float="left">
|
||||
<img src="https://user-images.githubusercontent.com/11957155/234230320-2189056d-1c89-4f0c-88da-851d12e8323c.gif" width="400" />
|
||||
<img src="https://user-images.githubusercontent.com/11957155/234231284-0adc4bae-ef90-41d3-9883-41f6407a883b.gif" width="400" />
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/11957155/234230320-2189056d-1c89-4f0c-88da-851d12e8323c.gif" width="500" />
|
||||
<img src="https://user-images.githubusercontent.com/11957155/234231284-0adc4bae-ef90-41d3-9883-41f6407a883b.gif" width="500" />
|
||||
</div>
|
||||
|
||||
## :camping: Click, scribble to mask
|
||||
With a simple click or stoke from the user, we can generate the masks and the corresponding category labels for it.
|
||||
|
|
Loading…
Reference in New Issue