Update README.md

pull/139/head
Xueyan Zou 2023-10-04 22:40:40 -05:00 committed by GitHub
parent 8465e5f606
commit 96a7ae82a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 2 additions and 1 deletions

View File

@ -41,7 +41,8 @@ git clone git@github.com:UX-Decoder/Segment-Everything-Everywhere-All-At-Once.gi
**SEEM_v1:** Supporting Multiple Interactive objects training and inference
## :rocket: Updates
* **[2023.07.27]** :roller_coaster: We are excited to release our [X-Decoder](https://github.com/microsoft/X-Decoder) training code! We will release its descendant SEEM training code very soon!
* **[2023.10.04]** We are excited to release :white_check_mark: [training/evaluation/demo code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), :white_check_mark: [new checkpoints](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), and :white_check_mark: [comprehensive readmes](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog) for ***both X-Decoder and SEEM***!
* **[2023.07.27]** We are excited to release our [X-Decoder](https://github.com/microsoft/X-Decoder) training code! We will release its descendant SEEM training code very soon!
* **[2023.07.10]** We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. Code and checkpoint are available!
* **[2023.05.02]** We have released the [SEEM Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focall_v1.pt) and [X-Decoder Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focall_last.pt) checkpoints and [configs](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/main/demo_code/configs/seem/seem_focall_lang.yaml)!
* **[2023.04.28]** We have updated the [ArXiv](https://arxiv.org/pdf/2304.06718.pdf) that shows *better interactive segmentation results than SAM*, which trained on x50 more data than us!