# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- import os import sys import json import logging pth = '/'.join(sys.path[0].split('/')[:-1]) sys.path.insert(0, pth) from PIL import Image import numpy as np np.random.seed(27) import torch from torchvision import transforms from utils.arguments import load_opt_command from detectron2.data import MetadataCatalog from detectron2.utils.colormap import random_color from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES from modeling.BaseModel import BaseModel from modeling import build_model from utils.visualizer import Visualizer from utils.distributed import init_distributed # logging.basicConfig(level = logging.INFO) logger = logging.getLogger(__name__) def main(args=None): ''' Main execution point for PyLearn. ''' opt, cmdline_args = load_opt_command(args) if cmdline_args.user_dir: absolute_user_dir = os.path.abspath(cmdline_args.user_dir) opt['base_path'] = absolute_user_dir opt = init_distributed(opt) # META DATA pretrained_pth = os.path.join(opt['RESUME_FROM']) output_root = './output' image_pth = 'inference/images/fruit.jpg' text = [['The larger watermelon.'], ['The front white flower.'], ['White tea pot.'], ['Flower bunch.'], ['white vase.'], ['The left peach.'], ['The brown knife.']] model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda() model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=False) t = [] t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) transform = transforms.Compose(t) metadata = MetadataCatalog.get('ade20k_panoptic_train') model.model.metadata = metadata with torch.no_grad(): image_ori = Image.open(image_pth) width = image_ori.size[0] height = image_ori.size[1] image = transform(image_ori) image = np.asarray(image) image_ori = np.asarray(image_ori) images = torch.from_numpy(image.copy()).permute(2,0,1).cuda() batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': text}}] outputs = model.model.evaluate_grounding(batch_inputs, None) visual = Visualizer(image_ori, metadata=metadata) grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy() for idx, mask in enumerate(grd_mask): demo = visual.draw_binary_mask(mask, color=random_color(rgb=True, maximum=1).astype(np.int).tolist(), text=text[idx], alpha=0.3) output_folder = os.path.join(os.path.join(output_root)) if not os.path.exists(output_folder): os.makedirs(output_folder) demo.save(os.path.join(output_folder, 'refseg.png')) if __name__ == "__main__": main() sys.exit(0)