Segment-Everything-Everywhe.../seem/inference/xdecoder/infer_instseg.py

96 lines
3.1 KiB
Python

# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou (xueyan@cs.wisc.edu)
# --------------------------------------------------------
import os
import sys
import logging
pth = '/'.join(sys.path[0].split('/')[:-1])
sys.path.insert(0, pth)
from PIL import Image
import numpy as np
np.random.seed(2)
import torch
from torchvision import transforms
from utils.arguments import load_opt_command
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks
from modeling.BaseModel import BaseModel
from modeling import build_model
from detectron2.utils.colormap import random_color
from utils.visualizer import Visualizer
from utils.distributed import init_distributed
logger = logging.getLogger(__name__)
def main(args=None):
'''
Main execution point for PyLearn.
'''
opt, cmdline_args = load_opt_command(args)
if cmdline_args.user_dir:
absolute_user_dir = os.path.abspath(cmdline_args.user_dir)
opt['base_path'] = absolute_user_dir
opt = init_distributed(opt)
# META DATA
pretrained_pth = os.path.join(opt['RESUME_FROM'])
output_root = './output'
image_pth = 'inference/images/owls.jpeg'
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda()
t = []
t.append(transforms.Resize(800, interpolation=Image.BICUBIC))
transform = transforms.Compose(t)
thing_classes = ["owl"]
thing_colors = [random_color(rgb=True, maximum=255).astype(np.int).tolist() for _ in range(len(thing_classes))]
thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
MetadataCatalog.get("demo").set(
thing_colors=thing_colors,
thing_classes=thing_classes,
thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
)
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + ["background"], is_eval=False)
metadata = MetadataCatalog.get('demo')
model.model.metadata = metadata
model.model.sem_seg_head.num_classes = len(thing_classes)
with torch.no_grad():
image_ori = Image.open(image_pth).convert('RGB')
width = image_ori.size[0]
height = image_ori.size[1]
image = transform(image_ori)
image = np.asarray(image)
image_ori = np.asarray(image_ori)
images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
batch_inputs = [{'image': images, 'height': height, 'width': width}]
outputs = model.forward(batch_inputs)
visual = Visualizer(image_ori, metadata=metadata)
inst_seg = outputs[-1]['instances']
inst_seg.pred_masks = inst_seg.pred_masks.cpu()
inst_seg.pred_boxes = BitMasks(inst_seg.pred_masks > 0).get_bounding_boxes()
demo = visual.draw_instance_predictions(inst_seg) # rgb Image
if not os.path.exists(output_root):
os.makedirs(output_root)
demo.save(os.path.join(output_root, 'inst.png'))
if __name__ == "__main__":
main()
sys.exit(0)