201 lines
7.2 KiB
Python
201 lines
7.2 KiB
Python
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn, Tensor
|
|
from torch.nn import functional as F
|
|
|
|
from timm.models.layers import trunc_normal_
|
|
from detectron2.layers import Conv2d
|
|
import fvcore.nn.weight_init as weight_init
|
|
|
|
from ..utils import MultiheadAttention
|
|
|
|
|
|
class SelfAttentionLayer(nn.Module):
|
|
|
|
def __init__(self, d_model, nhead, dropout=0.0,
|
|
activation="relu", normalize_before=False):
|
|
super().__init__()
|
|
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
self.norm = nn.LayerNorm(d_model)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
self.normalize_before = normalize_before
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
for p in self.parameters():
|
|
if p.dim() > 1:
|
|
nn.init.xavier_uniform_(p)
|
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self, tgt,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
|
|
q = k = self.with_pos_embed(tgt, query_pos)
|
|
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
|
key_padding_mask=tgt_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout(tgt2)
|
|
tgt = self.norm(tgt)
|
|
return tgt
|
|
|
|
def forward_pre(self, tgt,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
tgt2 = self.norm(tgt)
|
|
q = k = self.with_pos_embed(tgt2, query_pos)
|
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
|
key_padding_mask=tgt_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout(tgt2)
|
|
|
|
return tgt
|
|
|
|
def forward(self, tgt,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
if self.normalize_before:
|
|
return self.forward_pre(tgt, tgt_mask,
|
|
tgt_key_padding_mask, query_pos)
|
|
return self.forward_post(tgt, tgt_mask,
|
|
tgt_key_padding_mask, query_pos)
|
|
|
|
|
|
class CrossAttentionLayer(nn.Module):
|
|
|
|
def __init__(self, d_model, nhead, dropout=0.0,
|
|
activation="relu", normalize_before=False):
|
|
super().__init__()
|
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
self.norm = nn.LayerNorm(d_model)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
self.normalize_before = normalize_before
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
for p in self.parameters():
|
|
if p.dim() > 1:
|
|
nn.init.xavier_uniform_(p)
|
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self, tgt, memory,
|
|
memory_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
|
key=self.with_pos_embed(memory, pos),
|
|
value=memory, attn_mask=memory_mask,
|
|
key_padding_mask=memory_key_padding_mask)
|
|
tgt = tgt + self.dropout(tgt2)
|
|
tgt = self.norm(tgt)
|
|
return tgt, avg_attn
|
|
|
|
def forward_pre(self, tgt, memory,
|
|
memory_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
tgt2 = self.norm(tgt)
|
|
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
|
key=self.with_pos_embed(memory, pos),
|
|
value=memory, attn_mask=memory_mask,
|
|
key_padding_mask=memory_key_padding_mask)
|
|
tgt = tgt + self.dropout(tgt2)
|
|
|
|
return tgt, avg_attn
|
|
|
|
def forward(self, tgt, memory,
|
|
memory_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
if self.normalize_before:
|
|
return self.forward_pre(tgt, memory, memory_mask,
|
|
memory_key_padding_mask, pos, query_pos)
|
|
return self.forward_post(tgt, memory, memory_mask,
|
|
memory_key_padding_mask, pos, query_pos)
|
|
|
|
|
|
class FFNLayer(nn.Module):
|
|
|
|
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
|
activation="relu", normalize_before=False):
|
|
super().__init__()
|
|
# Implementation of Feedforward model
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
|
|
self.norm = nn.LayerNorm(d_model)
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
self.normalize_before = normalize_before
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
for p in self.parameters():
|
|
if p.dim() > 1:
|
|
nn.init.xavier_uniform_(p)
|
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self, tgt):
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
|
tgt = tgt + self.dropout(tgt2)
|
|
tgt = self.norm(tgt)
|
|
return tgt
|
|
|
|
def forward_pre(self, tgt):
|
|
tgt2 = self.norm(tgt)
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
|
tgt = tgt + self.dropout(tgt2)
|
|
return tgt
|
|
|
|
def forward(self, tgt):
|
|
if self.normalize_before:
|
|
return self.forward_pre(tgt)
|
|
return self.forward_post(tgt)
|
|
|
|
|
|
def _get_activation_fn(activation):
|
|
"""Return an activation function given a string"""
|
|
if activation == "relu":
|
|
return F.relu
|
|
if activation == "gelu":
|
|
return F.gelu
|
|
if activation == "glu":
|
|
return F.glu
|
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
|
|
|
|
|
class MLP(nn.Module):
|
|
""" Very simple multi-layer perceptron (also called FFN)"""
|
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
h = [hidden_dim] * (num_layers - 1)
|
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
|
|
def forward(self, x):
|
|
for i, layer in enumerate(self.layers):
|
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
return x
|