Segment-Everything-Everywhe.../demo/seem/tasks/interactive.py

269 lines
12 KiB
Python

# --------------------------------------------------------
# SEEM -- Segment Everything Everywhere All At Once
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou (xueyan@cs.wisc.edu)
# --------------------------------------------------------
import torch
import numpy as np
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from utils.visualizer import Visualizer
from detectron2.utils.colormap import random_color
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks
from modeling.language.loss import vl_similarity
from utils.constants import COCO_PANOPTIC_CLASSES
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
import cv2
import os
import glob
import subprocess
from PIL import Image
import random
t = []
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
transform = transforms.Compose(t)
metadata = MetadataCatalog.get('coco_2017_train_panoptic')
all_classes = [name.replace('-other','').replace('-merged','') for name in COCO_PANOPTIC_CLASSES] + ["others"]
colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
image_ori = transform(image['image'])
mask_ori = image['mask']
width = image_ori.size[0]
height = image_ori.size[1]
image_ori = np.asarray(image_ori)
visual = Visualizer(image_ori, metadata=metadata)
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
# stroke_inimg = None
# stroke_refimg = None
data = {"image": images, "height": height, "width": width}
if len(tasks) == 0:
tasks = ["Panoptic"]
# inistalize task
model.model.task_switch['spatial'] = False
model.model.task_switch['visual'] = False
model.model.task_switch['grounding'] = False
model.model.task_switch['audio'] = False
example = None
if 'Example' in tasks:
model.model.task_switch['visual'] = True
model.model.task_switch['spatial'] = True
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
refimg_ori = transform(refimg_ori)
_width = refimg_ori.size[0]
_height = refimg_ori.size[1]
refimg_ori = np.asarray(refimg_ori)
refimg_ori_np = refimg_ori.copy()
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
model.model.task_switch['spatial'] = False
data['visual'] = outputs_refimg
# overlay = refimg_mask[0,0].float().numpy()[:,:,None] * np.array([0,0,255])
# x = refimg_ori_np
# stroke_refimg = x * (1 - refimg_mask[0,0].float().numpy()[:,:,None]) + (x * refimg_mask[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
# stroke_refimg = Image.fromarray(stroke_refimg.astype(np.uint8))
stroke = None
if 'Stroke' in tasks:
model.model.task_switch['spatial'] = True
mask_ori = np.asarray(mask_ori)[:,:,0:1].copy()
mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[None,]
mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0)
data['stroke'] = mask_ori
# overlay = mask_ori[0,0].float().numpy()[:,:,None] * np.array([0,255,0])
# x = image_ori
# stroke_inimg = x * (1 - mask_ori[0,0].float().numpy()[:,:,None]) + (x * mask_ori[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
# stroke_inimg = Image.fromarray(stroke_inimg.astype(np.uint8))
text = None
if 'Text' in tasks:
model.model.task_switch['grounding'] = True
data['text'] = [reftxt]
audio = None
if 'Audio' in tasks:
model.model.task_switch['audio'] = True
audio_result = audio_model.transcribe(audio_pth)
data['audio'] = [audio_result['text']]
batch_inputs = [data]
if 'Panoptic' in tasks:
model.model.metadata = metadata
results = model.model.evaluate(batch_inputs)
pano_seg = results[-1]['panoptic_seg'][0]
pano_seg_info = results[-1]['panoptic_seg'][1]
demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
res = demo.get_image()
return Image.fromarray(res), None
else:
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
# If contians spatial use spatial:
if 'Stroke' in tasks:
v_emb = results['pred_maskembs']
s_emb = results['pred_pspatials']
pred_masks = results['pred_masks']
pred_logits = v_emb @ s_emb.transpose(1,2)
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
pred_masks_pos = pred_masks[logits_idx]
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
elif 'Example' in tasks:
v_emb = results['pred_maskembs']
s_emb = results['pred_pvisuals']
pred_masks = results['pred_masks']
pred_logits = v_emb @ s_emb.transpose(1,2)
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
pred_masks_pos = pred_masks[logits_idx]
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
elif 'Text' in tasks:
pred_masks = results['pred_masks'][0]
v_emb = results['pred_captions'][0]
t_emb = extra['grounding_class']
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
matched_id = out_prob.max(0)[1]
pred_masks_pos = pred_masks[matched_id,:,:]
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
elif 'Audio' in tasks:
pred_masks = results['pred_masks'][0]
v_emb = results['pred_captions'][0]
t_emb = extra['audio_class']
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
matched_id = out_prob.max(0)[1]
pred_masks_pos = pred_masks[matched_id,:,:]
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
# interpolate mask to ori size
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
texts = [all_classes[pred_class[0]]]
for idx, mask in enumerate(pred_masks_pos):
# color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
out_txt = texts[idx] if 'Text' not in tasks else reftxt
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
res = demo.get_image()
torch.cuda.empty_cache()
# return Image.fromarray(res), stroke_inimg, stroke_refimg
return Image.fromarray(res), None
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
if 'Video' in tasks:
input_dir = video_pth.replace('.mp4', '')
input_name = input_dir.split('/')[-1]
random_number = str(random.randint(10000, 99999))
output_dir = input_dir + '_output'
output_name = output_dir.split('/')[-1]
output_file = video_pth.replace('.mp4', '_{}_output.mp4'.format(random_number))
frame_interval = 10
# Ensure output directory exists
if not os.path.exists(input_dir):
os.makedirs(input_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Build the FFmpeg command
ffmpeg_cmd = "ffmpeg -i {} -vf \"fps=5\" {}/%04d.png".format(video_pth, input_dir)
os.system(ffmpeg_cmd)
data = {}
model.model.task_switch['visual'] = True
model.model.task_switch['spatial'] = True
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
refimg_ori = transform(refimg_ori)
_width = refimg_ori.size[0]
_height = refimg_ori.size[1]
refimg_ori = np.asarray(refimg_ori)
refimg_ori_np = refimg_ori.copy()
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
model.model.task_switch['visual'] = False
model.model.task_switch['spatial'] = False
data['visual'] = outputs_refimg
model.model.task_switch['visual'] = True
frame_pths = sorted(glob.glob(os.path.join(input_dir, '*.png')))
for frame_pth in frame_pths:
image_ori = transform(Image.open(frame_pth))
width = image_ori.size[0]
height = image_ori.size[1]
image_ori = np.asarray(image_ori)
visual = Visualizer(image_ori[:,:,::-1], metadata=metadata)
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
data.update({"image": images, "height": height, "width": width})
batch_inputs = [data]
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
v_emb = results['pred_maskembs']
s_emb = results['pred_pvisuals']
pred_masks = results['pred_masks']
pred_logits = v_emb @ s_emb.transpose(1,2)
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
pred_masks_pos = pred_masks[logits_idx]
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
texts = [all_classes[pred_class[0]]]
for idx, mask in enumerate(pred_masks_pos):
out_txt = texts[idx]
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
res = demo.get_image()
output_pth = frame_pth.replace(input_name, output_name)
cv2.imwrite(output_pth, res)
ffmpeg_cmd = "ffmpeg -framerate 5 -pattern_type glob -i '{}/*.png' -c:v libx264 {}".format(output_dir, output_file)
os.system(ffmpeg_cmd)
return None, output_file