mirror of
https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once.git
synced 2025-06-03 14:50:11 +08:00
180 lines
5.4 KiB
Python
180 lines
5.4 KiB
Python
import os
|
|
import time
|
|
import torch
|
|
import pickle
|
|
import torch.distributed as dist
|
|
|
|
|
|
def init_distributed(opt):
|
|
opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available()
|
|
if 'OMPI_COMM_WORLD_SIZE' not in os.environ:
|
|
# application was started without MPI
|
|
# default to single node with single process
|
|
opt['env_info'] = 'no MPI'
|
|
opt['world_size'] = 1
|
|
opt['local_size'] = 1
|
|
opt['rank'] = 0
|
|
opt['local_rank'] = 0
|
|
opt['master_address'] = '127.0.0.1'
|
|
opt['master_port'] = '8673'
|
|
else:
|
|
# application was started with MPI
|
|
# get MPI parameters
|
|
opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
|
opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE'])
|
|
opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
|
opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
|
|
|
# set up device
|
|
if not opt['CUDA']:
|
|
assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend'
|
|
opt['device'] = torch.device("cpu")
|
|
else:
|
|
torch.cuda.set_device(opt['local_rank'])
|
|
opt['device'] = torch.device("cuda", opt['local_rank'])
|
|
return opt
|
|
|
|
def is_main_process():
|
|
rank = 0
|
|
if 'OMPI_COMM_WORLD_SIZE' in os.environ:
|
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
|
|
|
return rank == 0
|
|
|
|
def get_world_size():
|
|
if not dist.is_available():
|
|
return 1
|
|
if not dist.is_initialized():
|
|
return 1
|
|
return dist.get_world_size()
|
|
|
|
def get_rank():
|
|
if not dist.is_available():
|
|
return 0
|
|
if not dist.is_initialized():
|
|
return 0
|
|
return dist.get_rank()
|
|
|
|
|
|
def synchronize():
|
|
"""
|
|
Helper function to synchronize (barrier) among all processes when
|
|
using distributed training
|
|
"""
|
|
if not dist.is_available():
|
|
return
|
|
if not dist.is_initialized():
|
|
return
|
|
world_size = dist.get_world_size()
|
|
rank = dist.get_rank()
|
|
if world_size == 1:
|
|
return
|
|
|
|
def _send_and_wait(r):
|
|
if rank == r:
|
|
tensor = torch.tensor(0, device="cuda")
|
|
else:
|
|
tensor = torch.tensor(1, device="cuda")
|
|
dist.broadcast(tensor, r)
|
|
while tensor.item() == 1:
|
|
time.sleep(1)
|
|
|
|
_send_and_wait(0)
|
|
# now sync on the main process
|
|
_send_and_wait(1)
|
|
|
|
|
|
def all_gather(data):
|
|
"""
|
|
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
Args:
|
|
data: any picklable object
|
|
Returns:
|
|
list[data]: list of data gathered from each rank
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size == 1:
|
|
return [data]
|
|
|
|
# serialized to a Tensor
|
|
buffer = pickle.dumps(data)
|
|
storage = torch.ByteStorage.from_buffer(buffer)
|
|
tensor = torch.ByteTensor(storage).to("cuda")
|
|
|
|
# obtain Tensor size of each rank
|
|
local_size = torch.IntTensor([tensor.numel()]).to("cuda")
|
|
size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)]
|
|
dist.all_gather(size_list, local_size)
|
|
size_list = [int(size.item()) for size in size_list]
|
|
max_size = max(size_list)
|
|
|
|
# receiving Tensor from all ranks
|
|
# we pad the tensor because torch all_gather does not support
|
|
# gathering tensors of different shapes
|
|
tensor_list = []
|
|
for _ in size_list:
|
|
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
|
|
if local_size != max_size:
|
|
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
|
|
tensor = torch.cat((tensor, padding), dim=0)
|
|
dist.all_gather(tensor_list, tensor)
|
|
|
|
data_list = []
|
|
for size, tensor in zip(size_list, tensor_list):
|
|
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
data_list.append(pickle.loads(buffer))
|
|
|
|
return data_list
|
|
|
|
|
|
def reduce_dict(input_dict, average=True):
|
|
"""
|
|
Args:
|
|
input_dict (dict): all the values will be reduced
|
|
average (bool): whether to do average or sum
|
|
Reduce the values in the dictionary from all processes so that process with rank
|
|
0 has the averaged results. Returns a dict with the same fields as
|
|
input_dict, after reduction.
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size < 2:
|
|
return input_dict
|
|
with torch.no_grad():
|
|
names = []
|
|
values = []
|
|
# sort the keys so that they are consistent across processes
|
|
for k in sorted(input_dict.keys()):
|
|
names.append(k)
|
|
values.append(input_dict[k])
|
|
values = torch.stack(values, dim=0)
|
|
dist.reduce(values, dst=0)
|
|
if dist.get_rank() == 0 and average:
|
|
# only main process gets accumulated, so only divide by
|
|
# world_size in this case
|
|
values /= world_size
|
|
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
return reduced_dict
|
|
|
|
|
|
def broadcast_data(data):
|
|
if not torch.distributed.is_initialized():
|
|
return data
|
|
rank = dist.get_rank()
|
|
if rank == 0:
|
|
data_tensor = torch.tensor(data + [0], device="cuda")
|
|
else:
|
|
data_tensor = torch.tensor(data + [1], device="cuda")
|
|
torch.distributed.broadcast(data_tensor, 0)
|
|
while data_tensor.cpu().numpy()[-1] == 1:
|
|
time.sleep(1)
|
|
|
|
return data_tensor.cpu().numpy().tolist()[:-1]
|
|
|
|
|
|
def reduce_sum(tensor):
|
|
if get_world_size() <= 1:
|
|
return tensor
|
|
|
|
tensor = tensor.clone()
|
|
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
|
|
return tensor |