2020-02-18 03:05:44 +08:00
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2020-02-25 05:23:44 +08:00
|
|
|
import torch
|
2020-02-18 03:05:44 +08:00
|
|
|
|
2020-02-20 21:02:03 +08:00
|
|
|
np.random.seed(0)
|
|
|
|
|
2020-02-18 03:05:44 +08:00
|
|
|
|
2020-02-25 05:23:44 +08:00
|
|
|
def get_negative_mask(batch_size):
|
|
|
|
negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool)
|
|
|
|
for i in range(batch_size):
|
|
|
|
negative_mask[i, i] = 0
|
|
|
|
negative_mask[i, i + batch_size] = 0
|
|
|
|
return negative_mask
|
|
|
|
|
|
|
|
|
2020-02-18 03:05:44 +08:00
|
|
|
class GaussianBlur(object):
|
|
|
|
|
|
|
|
def __init__(self, min=0.1, max=2.0, kernel_size=9):
|
|
|
|
self.min = min
|
|
|
|
self.max = max
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
|
|
|
|
def __call__(self, sample):
|
|
|
|
sample = np.array(sample)
|
|
|
|
|
2020-02-19 04:21:50 +08:00
|
|
|
# blur the image with a 50% chance
|
2020-02-19 02:06:14 +08:00
|
|
|
prob = np.random.random_sample()
|
|
|
|
|
|
|
|
if prob < 0.5:
|
|
|
|
sigma = (self.max - self.min) * np.random.random_sample() + self.min
|
|
|
|
sample = cv2.GaussianBlur(sample, (self.kernel_size, self.kernel_size), sigma)
|
|
|
|
|
|
|
|
return sample
|
2020-02-20 21:02:03 +08:00
|
|
|
|
|
|
|
# if use_cosine_similarity:
|
|
|
|
# cos1d = torch.nn.CosineSimilarity(dim=1)
|
|
|
|
# cos2d = torch.nn.CosineSimilarity(dim=2)
|
|
|
|
# similarity_dim1 = lambda x, y: cos1d(x, y.unsqueeze(0))
|
|
|
|
# similarity_dim2 = lambda x, y: cos2d(x, y.unsqueeze(0))
|
|
|
|
# else:
|
|
|
|
# similarity_dim1 = lambda x, y: torch.bmm(x.unsqueeze(1), y.unsqueeze(2))
|
|
|
|
# similarity_dim2 = lambda x, y: torch.tensordot(x, y.T.unsqueeze(0), dims=2)
|