2020-02-17 16:05:44 -03:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
2020-02-19 19:12:07 -03:00
|
|
|
import torchvision.models as models
|
2020-02-17 16:05:44 -03:00
|
|
|
|
|
|
|
|
2020-02-24 15:36:10 -03:00
|
|
|
class ResNetSimCLR(nn.Module):
|
2020-02-19 19:12:07 -03:00
|
|
|
|
2020-02-24 15:36:10 -03:00
|
|
|
def __init__(self, base_model="resnet18", out_dim=64):
|
|
|
|
super(ResNetSimCLR, self).__init__()
|
|
|
|
self.resnet_dict = {"resnet18": models.resnet18(pretrained=False),
|
|
|
|
"resnet50": models.resnet50(pretrained=False)}
|
|
|
|
|
|
|
|
resnet = self._get_basemodel(base_model)
|
2020-02-19 19:12:07 -03:00
|
|
|
num_ftrs = resnet.fc.in_features
|
|
|
|
|
|
|
|
self.features = nn.Sequential(*list(resnet.children())[:-1])
|
|
|
|
|
|
|
|
# projection MLP
|
|
|
|
self.l1 = nn.Linear(num_ftrs, num_ftrs)
|
|
|
|
self.l2 = nn.Linear(num_ftrs, out_dim)
|
|
|
|
|
2020-02-24 15:36:10 -03:00
|
|
|
def _get_basemodel(self, model_name):
|
|
|
|
try:
|
|
|
|
return self.resnet_dict[model_name]
|
|
|
|
except:
|
|
|
|
raise ("Invalid model name. Check the config file and pass one of: resnet18 or resnet50")
|
|
|
|
|
2020-02-19 19:12:07 -03:00
|
|
|
def forward(self, x):
|
|
|
|
h = self.features(x)
|
|
|
|
h = h.squeeze()
|
|
|
|
|
|
|
|
x = self.l1(h)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = self.l2(x)
|
|
|
|
return h, x
|