Update README.md

pull/5/head
Thalles Silva 2020-03-13 22:54:00 -03:00 committed by GitHub
parent f29f12e4e1
commit 214baadb16
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 47 additions and 13 deletions

View File

@ -17,19 +17,53 @@
Before running SimCLR, make sure you choose the correct running configurations on the ```config.yaml``` file.
```yaml
batch_size: 256 # A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192
out_dim: 64 # Output dimensionality of the embedding vector z. Original implementation uses 2048
s: 1
temperature: 0.5 # Temperature parameter for the contrastive objective
base_convnet: "resnet18" # The ConvNet base model. Choose one of: "resnet18 or resnet50". Original implementation uses resnet50
use_cosine_similarity: True # Distance metric for contrastive loss. If False, uses dot product
epochs: 40 # Number of epochs to train
num_workers: 4 # Number of workers for the data loader
valid_size: 0.05 # validation set size
eval_every_n_epochs: 2 # frequency to eval the similary score using the validation set
continue_training: Mar10_21-50-05_thallessilva # defines a folder containing a pre-trained model to fine-tune
log_every_n_steps: 50 # frequency to which tensorboard is updated
input_shape: (96,96,3) # dataset input shape. For datasets containing images of different size, this defines the final cropped shape
# A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192
batch_size: 512
# Number of epochs to train
epochs: 40
# Frequency to eval the similary score using the validation set
eval_every_n_epochs: 1
# Specify a folder containing a pre-trained model to fine-tune
fine_tune_from: 'Mar13_20-12-09_thallessilva'
# Frequency to which tensorboard is updated
log_every_n_steps: 50
# Model related parameters
model:
# Output dimensionality of the embedding vector z. Original implementation uses 2048
out_dim: 256
# The ConvNet base model. Choose one of: "resnet18" or "resnet50". Original implementation uses resnet50
base_model: "resnet18"
# Dataset related parameters
dataset:
s: 1
# dataset input shape. For datasets containing images of different size, this defines the final
input_shape: (96,96,3)
# Number of workers for the data loader
num_workers: 0
# Size of the validation set in percentage
valid_size: 0.05
# NTXent loss related parameters
loss:
# Temperature parameter for the contrastive objective
temperature: 0.5
# Distance metric for contrastive loss. If False, uses dot product. Original implementation uses cosine similarity.
use_cosine_similarity: True
```
## Feature Evaluation