mirror of https://github.com/sthalles/SimCLR.git
Update README.md
parent
f29f12e4e1
commit
214baadb16
60
README.md
60
README.md
|
@ -17,19 +17,53 @@
|
|||
Before running SimCLR, make sure you choose the correct running configurations on the ```config.yaml``` file.
|
||||
|
||||
```yaml
|
||||
batch_size: 256 # A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192
|
||||
out_dim: 64 # Output dimensionality of the embedding vector z. Original implementation uses 2048
|
||||
s: 1
|
||||
temperature: 0.5 # Temperature parameter for the contrastive objective
|
||||
base_convnet: "resnet18" # The ConvNet base model. Choose one of: "resnet18 or resnet50". Original implementation uses resnet50
|
||||
use_cosine_similarity: True # Distance metric for contrastive loss. If False, uses dot product
|
||||
epochs: 40 # Number of epochs to train
|
||||
num_workers: 4 # Number of workers for the data loader
|
||||
valid_size: 0.05 # validation set size
|
||||
eval_every_n_epochs: 2 # frequency to eval the similary score using the validation set
|
||||
continue_training: Mar10_21-50-05_thallessilva # defines a folder containing a pre-trained model to fine-tune
|
||||
log_every_n_steps: 50 # frequency to which tensorboard is updated
|
||||
input_shape: (96,96,3) # dataset input shape. For datasets containing images of different size, this defines the final cropped shape
|
||||
|
||||
# A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192
|
||||
batch_size: 512
|
||||
|
||||
# Number of epochs to train
|
||||
epochs: 40
|
||||
|
||||
# Frequency to eval the similary score using the validation set
|
||||
eval_every_n_epochs: 1
|
||||
|
||||
# Specify a folder containing a pre-trained model to fine-tune
|
||||
fine_tune_from: 'Mar13_20-12-09_thallessilva'
|
||||
|
||||
# Frequency to which tensorboard is updated
|
||||
log_every_n_steps: 50
|
||||
|
||||
# Model related parameters
|
||||
model:
|
||||
# Output dimensionality of the embedding vector z. Original implementation uses 2048
|
||||
out_dim: 256
|
||||
|
||||
# The ConvNet base model. Choose one of: "resnet18" or "resnet50". Original implementation uses resnet50
|
||||
base_model: "resnet18"
|
||||
|
||||
# Dataset related parameters
|
||||
dataset:
|
||||
s: 1
|
||||
|
||||
# dataset input shape. For datasets containing images of different size, this defines the final
|
||||
input_shape: (96,96,3)
|
||||
|
||||
# Number of workers for the data loader
|
||||
num_workers: 0
|
||||
|
||||
# Size of the validation set in percentage
|
||||
valid_size: 0.05
|
||||
|
||||
# NTXent loss related parameters
|
||||
loss:
|
||||
# Temperature parameter for the contrastive objective
|
||||
temperature: 0.5
|
||||
|
||||
# Distance metric for contrastive loss. If False, uses dot product. Original implementation uses cosine similarity.
|
||||
use_cosine_similarity: True
|
||||
|
||||
|
||||
|
||||
```
|
||||
|
||||
## Feature Evaluation
|
||||
|
|
Loading…
Reference in New Issue