From 214baadb16585070ce9da6986da83ecab8fea913 Mon Sep 17 00:00:00 2001 From: Thalles Silva Date: Fri, 13 Mar 2020 22:54:00 -0300 Subject: [PATCH] Update README.md --- README.md | 60 +++++++++++++++++++++++++++++++++++++++++++------------ 1 file changed, 47 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index 5cbf10c..ab86366 100644 --- a/README.md +++ b/README.md @@ -17,19 +17,53 @@ Before running SimCLR, make sure you choose the correct running configurations on the ```config.yaml``` file. ```yaml -batch_size: 256 # A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192 -out_dim: 64 # Output dimensionality of the embedding vector z. Original implementation uses 2048 -s: 1 -temperature: 0.5 # Temperature parameter for the contrastive objective -base_convnet: "resnet18" # The ConvNet base model. Choose one of: "resnet18 or resnet50". Original implementation uses resnet50 -use_cosine_similarity: True # Distance metric for contrastive loss. If False, uses dot product -epochs: 40 # Number of epochs to train -num_workers: 4 # Number of workers for the data loader -valid_size: 0.05 # validation set size -eval_every_n_epochs: 2 # frequency to eval the similary score using the validation set -continue_training: Mar10_21-50-05_thallessilva # defines a folder containing a pre-trained model to fine-tune -log_every_n_steps: 50 # frequency to which tensorboard is updated -input_shape: (96,96,3) # dataset input shape. For datasets containing images of different size, this defines the final cropped shape + +# A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192 +batch_size: 512 + +# Number of epochs to train +epochs: 40 + +# Frequency to eval the similary score using the validation set +eval_every_n_epochs: 1 + +# Specify a folder containing a pre-trained model to fine-tune +fine_tune_from: 'Mar13_20-12-09_thallessilva' + +# Frequency to which tensorboard is updated +log_every_n_steps: 50 + +# Model related parameters +model: + # Output dimensionality of the embedding vector z. Original implementation uses 2048 + out_dim: 256 + + # The ConvNet base model. Choose one of: "resnet18" or "resnet50". Original implementation uses resnet50 + base_model: "resnet18" + +# Dataset related parameters +dataset: + s: 1 + + # dataset input shape. For datasets containing images of different size, this defines the final + input_shape: (96,96,3) + + # Number of workers for the data loader + num_workers: 0 + + # Size of the validation set in percentage + valid_size: 0.05 + +# NTXent loss related parameters +loss: + # Temperature parameter for the contrastive objective + temperature: 0.5 + + # Distance metric for contrastive loss. If False, uses dot product. Original implementation uses cosine similarity. + use_cosine_similarity: True + + + ``` ## Feature Evaluation