diff --git a/feature_eval/mini_batch_logistic_regression_evaluator.ipynb b/feature_eval/mini_batch_logistic_regression_evaluator.ipynb index f64e920..faa96aa 100644 --- a/feature_eval/mini_batch_logistic_regression_evaluator.ipynb +++ b/feature_eval/mini_batch_logistic_regression_evaluator.ipynb @@ -24,10 +24,7 @@ "provenance": [], "include_colab_link": true }, - "accelerator": "GPU", - "widgets": { - "application/vnd.jupyter.widget-state+json": {} - } + "accelerator": "GPU" }, "cells": [ { @@ -228,7 +225,7 @@ "id": "BfIPl0G6_RrT" }, "source": [ - "def get_stl10_data_loaders(download, shuffle=False, batch_size=128):\n", + "def get_stl10_data_loaders(download, shuffle=False, batch_size=256):\n", " train_dataset = datasets.STL10('./data', split='train', download=download,\n", " transform=transforms.ToTensor())\n", "\n", @@ -242,7 +239,7 @@ " num_workers=10, drop_last=False, shuffle=shuffle)\n", " return train_loader, test_loader\n", "\n", - "def get_cifar10_data_loaders(download, shuffle=False, batch_size=128):\n", + "def get_cifar10_data_loaders(download, shuffle=False, batch_size=256):\n", " train_dataset = datasets.CIFAR10('./data', train=True, download=download,\n", " transform=transforms.ToTensor())\n", "\n", @@ -282,7 +279,7 @@ "elif config.arch == 'resnet50':\n", " model = torchvision.models.resnet50(pretrained=False, num_classes=10).to(device)" ], - "execution_count": 11, + "execution_count": null, "outputs": [] }, { @@ -302,7 +299,7 @@ " state_dict[k[len(\"backbone.\"):]] = state_dict[k]\n", " del state_dict[k]" ], - "execution_count": 12, + "execution_count": null, "outputs": [] }, { @@ -314,7 +311,7 @@ "log = model.load_state_dict(state_dict, strict=False)\n", "assert log.missing_keys == ['fc.weight', 'fc.bias']" ], - "execution_count": 13, + "execution_count": null, "outputs": [] }, { @@ -337,7 +334,7 @@ " train_loader, test_loader = get_stl10_data_loaders(download=True)\n", "print(\"Dataset:\", config.dataset_name)" ], - "execution_count": 14, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -387,7 +384,7 @@ "parameters = list(filter(lambda p: p.requires_grad, model.parameters()))\n", "assert len(parameters) == 2 # fc.weight, fc.bias" ], - "execution_count": 15, + "execution_count": null, "outputs": [] }, { @@ -399,7 +396,7 @@ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=0.0008)\n", "criterion = torch.nn.CrossEntropyLoss().to(device)" ], - "execution_count": 16, + "execution_count": null, "outputs": [] }, { @@ -424,7 +421,7 @@ " res.append(correct_k.mul_(100.0 / batch_size))\n", " return res" ], - "execution_count": 17, + "execution_count": null, "outputs": [] }, { @@ -470,7 +467,7 @@ " top5_accuracy /= (counter + 1)\n", " print(f\"Epoch {epoch}\\tTop1 Train accuracy {top1_train_accuracy.item()}\\tTop1 Test accuracy: {top1_accuracy.item()}\\tTop5 test acc: {top5_accuracy.item()}\")" ], - "execution_count": 18, + "execution_count": null, "outputs": [ { "output_type": "stream", @@ -588,7 +585,7 @@ "source": [ "" ], - "execution_count": 18, + "execution_count": null, "outputs": [] } ]