added tensorboard support

This commit is contained in:
Thalles 2020-02-29 07:53:14 -03:00
parent 6e555f1f1c
commit 67b8b5b0c1
2 changed files with 36 additions and 17 deletions

View File

@ -21,7 +21,7 @@ out_dim = config['out_dim']
temperature = config['temperature'] temperature = config['temperature']
use_cosine_similarity = config['use_cosine_similarity'] use_cosine_similarity = config['use_cosine_similarity']
data_augment = get_augmentation_transform(s=config['s']) data_augment = get_augmentation_transform(s=config['s'], crop_size=96)
train_dataset = datasets.STL10('./data', split='train', download=True, transform=transforms.ToTensor()) train_dataset = datasets.STL10('./data', split='train', download=True, transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=config['num_workers'], drop_last=True, train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=config['num_workers'], drop_last=True,
@ -30,10 +30,10 @@ train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=conf
# model = Encoder(out_dim=out_dim) # model = Encoder(out_dim=out_dim)
model = ResNetSimCLR(base_model=config["base_convnet"], out_dim=out_dim) model = ResNetSimCLR(base_model=config["base_convnet"], out_dim=out_dim)
train_gpu = torch.cuda.is_available() train_gpu = False # torch.cuda.is_available()
print("Is gpu available:", train_gpu) print("Is gpu available:", train_gpu)
# moves the model paramemeters to gpu # moves the model parameters to gpu
if train_gpu: if train_gpu:
model.cuda() model.cuda()
@ -103,12 +103,11 @@ for e in range(config['epochs']):
for positives in [zis, zjs]: for positives in [zis, zjs]:
if use_cosine_similarity: if use_cosine_similarity:
negatives = negatives.view(1, (2 * batch_size), out_dim) l_neg = cos_similarity_dim2(positives.view(batch_size, 1, out_dim),
l_neg = cos_similarity_dim2(positives.view(batch_size, 1, out_dim), negatives) negatives.view(1, (2 * batch_size), out_dim))
else: else:
l_neg = torch.tensordot(positives.view(batch_size, 1, out_dim), l_neg = torch.tensordot(positives.view(batch_size, 1, out_dim),
negatives.T.view(1, out_dim, (2 * batch_size)), negatives.T.view(1, out_dim, (2 * batch_size)), dims=2)
dims=2)
labels = torch.zeros(batch_size, dtype=torch.long) labels = torch.zeros(batch_size, dtype=torch.long)
if train_gpu: if train_gpu:

View File

@ -4,6 +4,8 @@ import torch
import torchvision.transforms as transforms import torchvision.transforms as transforms
np.random.seed(0) np.random.seed(0)
cos1d = torch.nn.CosineSimilarity(dim=1)
cos2d = torch.nn.CosineSimilarity(dim=2)
def get_negative_mask(batch_size): def get_negative_mask(batch_size):
@ -37,11 +39,11 @@ class GaussianBlur(object):
return sample return sample
def get_augmentation_transform(s=1): def get_augmentation_transform(s, crop_size):
# get a set of data augmentation transformations as described in the SimCLR paper. # get a set of data augmentation transformations as described in the SimCLR paper.
color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
data_aug_ope = transforms.Compose([transforms.ToPILImage(), data_aug_ope = transforms.Compose([transforms.ToPILImage(),
transforms.RandomResizedCrop(96), transforms.RandomResizedCrop(crop_size),
transforms.RandomHorizontalFlip(), transforms.RandomHorizontalFlip(),
transforms.RandomApply([color_jitter], p=0.8), transforms.RandomApply([color_jitter], p=0.8),
transforms.RandomGrayscale(p=0.2), transforms.RandomGrayscale(p=0.2),
@ -49,11 +51,29 @@ def get_augmentation_transform(s=1):
transforms.ToTensor()]) transforms.ToTensor()])
return data_aug_ope return data_aug_ope
# if use_cosine_similarity:
# cos1d = torch.nn.CosineSimilarity(dim=1) def _dot_simililarity_dim1(x, y):
# cos2d = torch.nn.CosineSimilarity(dim=2) v = torch.bmm(x.unsqueeze(1), y.unsqueeze(2))
# similarity_dim1 = lambda x, y: cos1d(x, y.unsqueeze(0)) return v
# similarity_dim2 = lambda x, y: cos2d(x, y.unsqueeze(0))
# else:
# similarity_dim1 = lambda x, y: torch.bmm(x.unsqueeze(1), y.unsqueeze(2)) def _dot_simililarity_dim2(x, y):
# similarity_dim2 = lambda x, y: torch.tensordot(x, y.T.unsqueeze(0), dims=2) v = torch.tensordot(x.unsqueeze(1), y.T.unsqueeze(0), dims=2)
return v
def _cosine_simililarity_dim1(x, y):
v = cos1d(x, y)
return v
def _cosine_simililarity_dim2(x, y):
v = cos2d(x.unsqueeze(1), y.unsqueeze(0))
return v
def get_similarity_function(use_cosine_similarity):
if use_cosine_similarity:
return _cosine_simililarity_dim1, _cosine_simililarity_dim2
else:
return _dot_simililarity_dim1, _dot_simililarity_dim2