added mixed precision tranining

This commit is contained in:
Thalles 2020-03-15 21:55:00 -03:00
parent 89abbabd56
commit 68d57a13c7
3 changed files with 39 additions and 25 deletions

View File

@ -4,6 +4,7 @@ eval_every_n_epochs: 1
fine_tune_from: None fine_tune_from: None
log_every_n_steps: 50 log_every_n_steps: 50
weight_decay: 10e-6 weight_decay: 10e-6
opt_level: 'O0'
model: model:
out_dim: 256 out_dim: 256

View File

@ -10,9 +10,9 @@ class NTXentLoss(torch.nn.Module):
self.temperature = temperature self.temperature = temperature
self.device = device self.device = device
self.softmax = torch.nn.Softmax(dim=-1) self.softmax = torch.nn.Softmax(dim=-1)
self.mask_samples_from_same_repr = self._get_correlated_mask() self.mask_samples_from_same_repr = self._get_correlated_mask().type(torch.bool)
self.similarity_function = self._get_similarity_function(use_cosine_similarity) self.similarity_function = self._get_similarity_function(use_cosine_similarity)
self.labels = self._get_labels() self.criterion = torch.nn.CrossEntropyLoss(reduction="sum")
def _get_similarity_function(self, use_cosine_similarity): def _get_similarity_function(self, use_cosine_similarity):
if use_cosine_similarity: if use_cosine_similarity:
@ -21,14 +21,13 @@ class NTXentLoss(torch.nn.Module):
else: else:
return self._dot_simililarity return self._dot_simililarity
def _get_labels(self):
l1 = np.eye((2 * self.batch_size), 2 * self.batch_size - 1, k=-self.batch_size)
l2 = np.eye((2 * self.batch_size), 2 * self.batch_size - 1, k=self.batch_size - 1)
labels = torch.from_numpy((l1 + l2).astype(np.int))
return labels.to(self.device)
def _get_correlated_mask(self): def _get_correlated_mask(self):
return (1 - torch.eye(2 * self.batch_size)).type(torch.bool) diag = np.eye(2 * self.batch_size)
l1 = np.eye((2 * self.batch_size), 2 * self.batch_size, k=-self.batch_size)
l2 = np.eye((2 * self.batch_size), 2 * self.batch_size, k=self.batch_size)
mask = torch.from_numpy((diag + l1 + l2))
mask = (1 - mask).type(torch.bool)
return mask.to(self.device)
@staticmethod @staticmethod
def _dot_simililarity(x, y): def _dot_simililarity(x, y):
@ -46,14 +45,21 @@ class NTXentLoss(torch.nn.Module):
return v return v
def forward(self, zis, zjs): def forward(self, zis, zjs):
negatives = torch.cat([zjs, zis], dim=0) representations = torch.cat([zjs, zis], dim=0)
logits = self.similarity_function(negatives, negatives) similarity_matrix = self.similarity_function(representations, representations)
logits = logits[self.mask_samples_from_same_repr.type(torch.bool)].view(2 * self.batch_size, -1)
# filter out the scores from the positive samples
l_pos = torch.diag(similarity_matrix, self.batch_size)
r_pos = torch.diag(similarity_matrix, -self.batch_size)
positives = torch.cat([l_pos, r_pos]).view(2 * self.batch_size, 1)
negatives = similarity_matrix[self.mask_samples_from_same_repr].view(2 * self.batch_size, -1)
logits = torch.cat((positives, negatives), dim=1)
logits /= self.temperature logits /= self.temperature
# assert logits.shape == (2 * self.batch_size, 2 * self.batch_size - 1), "Shape of negatives not expected." + str(
# logits.shape)
probs = self.softmax(logits) labels = torch.zeros(2 * self.batch_size).to(self.device).long()
loss = torch.mean(-torch.sum(self.labels * torch.log(probs), dim=-1)) loss = self.criterion(logits, labels)
return loss
return loss / (2 * self.batch_size)

View File

@ -5,6 +5,14 @@ import torch.nn.functional as F
from loss.nt_xent import NTXentLoss from loss.nt_xent import NTXentLoss
import os import os
import shutil import shutil
import sys
try:
sys.path.append('./apex')
from apex import amp
except:
raise ("Please install apex for mixed precision training")
import numpy as np import numpy as np
torch.manual_seed(0) torch.manual_seed(0)
@ -43,13 +51,6 @@ class SimCLR(object):
zjs = F.normalize(zjs, dim=1) zjs = F.normalize(zjs, dim=1)
loss = self.nt_xent_criterion(zis, zjs) loss = self.nt_xent_criterion(zis, zjs)
if n_iter % self.config['log_every_n_steps'] == 0:
self.writer.add_histogram("xi_repr", ris, global_step=n_iter)
self.writer.add_histogram("xi_latent", zis, global_step=n_iter)
self.writer.add_histogram("xj_repr", rjs, global_step=n_iter)
self.writer.add_histogram("xj_latent", zjs, global_step=n_iter)
return loss return loss
def train(self): def train(self):
@ -64,6 +65,10 @@ class SimCLR(object):
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0, scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
last_epoch=-1) last_epoch=-1)
model, optimizer = amp.initialize(model, optimizer,
opt_level=self.config['opt_level'],
keep_batchnorm_fp32=True)
model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints') model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints')
# save config file # save config file
@ -85,7 +90,9 @@ class SimCLR(object):
if n_iter % self.config['log_every_n_steps'] == 0: if n_iter % self.config['log_every_n_steps'] == 0:
self.writer.add_scalar('train_loss', loss, global_step=n_iter) self.writer.add_scalar('train_loss', loss, global_step=n_iter)
loss.backward() with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step() optimizer.step()
n_iter += 1 n_iter += 1