mirror of https://github.com/sthalles/SimCLR.git
fix small bugs
parent
f78ee5d069
commit
ca32c990ec
|
@ -8,4 +8,5 @@ epochs: 50
|
|||
num_workers: 0
|
||||
valid_size: 0.05
|
||||
eval_every_n_epochs: 2
|
||||
continue_training: None
|
||||
continue_training: Mar10_21-50-05_thallessilva
|
||||
log_every_n_steps: 50
|
||||
|
|
|
@ -34,7 +34,7 @@ class GaussianBlur(object):
|
|||
return sample
|
||||
|
||||
|
||||
def get_data_transform_opes(s, crop_size):
|
||||
def get_simclr_data_transform(s, crop_size):
|
||||
# get a set of data augmentation transformations as described in the SimCLR paper.
|
||||
color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
|
||||
data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=crop_size),
|
||||
|
|
28
train.py
28
train.py
|
@ -13,7 +13,7 @@ import torch.nn.functional as F
|
|||
import numpy as np
|
||||
from models.resnet_simclr import ResNetSimCLR
|
||||
from utils import get_similarity_function, get_train_validation_data_loaders
|
||||
from data_aug.data_transform import DataTransform, get_data_transform_opes
|
||||
from data_aug.data_transform import DataTransform, get_simclr_data_transform
|
||||
|
||||
torch.manual_seed(0)
|
||||
np.random.seed(0)
|
||||
|
@ -25,34 +25,34 @@ out_dim = config['out_dim']
|
|||
temperature = config['temperature']
|
||||
use_cosine_similarity = config['use_cosine_similarity']
|
||||
|
||||
data_augment = get_data_transform_opes(s=config['s'], crop_size=96)
|
||||
data_augment = get_simclr_data_transform(s=config['s'], crop_size=96)
|
||||
|
||||
train_dataset = datasets.STL10('./data', split='train+unlabeled', download=True, transform=DataTransform(data_augment))
|
||||
|
||||
train_loader, valid_loader = get_train_validation_data_loaders(train_dataset, config)
|
||||
train_loader, valid_loader = get_train_validation_data_loaders(train_dataset, **config)
|
||||
|
||||
# model = Encoder(out_dim=out_dim)
|
||||
model = ResNetSimCLR(base_model=config["base_convnet"], out_dim=out_dim)
|
||||
|
||||
if eval(config['continue_training']):
|
||||
model_id = eval(config['continue_training'])
|
||||
checkpoints_folder = os.path.join('./runs', model_id, 'checkpoints')
|
||||
if config['continue_training']:
|
||||
checkpoints_folder = os.path.join('./runs', config['continue_training'], 'checkpoints')
|
||||
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth'))
|
||||
model.load_state_dict(state_dict)
|
||||
print("Loaded pre-trained model with success.")
|
||||
|
||||
train_gpu = torch.cuda.is_available()
|
||||
print("Is gpu available:", train_gpu)
|
||||
|
||||
# moves the model parameters to gpu
|
||||
if train_gpu:
|
||||
model.cuda()
|
||||
model = model.cuda()
|
||||
|
||||
criterion = torch.nn.CrossEntropyLoss(reduction='sum')
|
||||
optimizer = optim.Adam(model.parameters(), 3e-4)
|
||||
|
||||
train_writer = SummaryWriter()
|
||||
|
||||
_, similarity_func = get_similarity_function(use_cosine_similarity)
|
||||
similarity_func = get_similarity_function(use_cosine_similarity)
|
||||
|
||||
megative_mask = (1 - torch.eye(2 * batch_size)).type(torch.bool)
|
||||
labels = (np.eye((2 * batch_size), 2 * batch_size - 1, k=-batch_size) + np.eye((2 * batch_size), 2 * batch_size - 1,
|
||||
|
@ -61,19 +61,21 @@ labels = torch.from_numpy(labels)
|
|||
softmax = torch.nn.Softmax(dim=-1)
|
||||
|
||||
if train_gpu:
|
||||
labels.cuda()
|
||||
labels = labels.cuda()
|
||||
|
||||
|
||||
def step(xis, xjs):
|
||||
# get the representations and the projections
|
||||
ris, zis = model(xis) # [N,C]
|
||||
train_writer.add_histogram("xi_repr", ris, global_step=n_iter)
|
||||
train_writer.add_histogram("xi_latent", zis, global_step=n_iter)
|
||||
|
||||
# get the representations and the projections
|
||||
rjs, zjs = model(xjs) # [N,C]
|
||||
train_writer.add_histogram("xj_repr", rjs, global_step=n_iter)
|
||||
train_writer.add_histogram("xj_latent", zjs, global_step=n_iter)
|
||||
|
||||
if n_iter % config['log_every_n_steps'] == 0:
|
||||
train_writer.add_histogram("xi_repr", ris, global_step=n_iter)
|
||||
train_writer.add_histogram("xi_latent", zis, global_step=n_iter)
|
||||
train_writer.add_histogram("xj_repr", rjs, global_step=n_iter)
|
||||
train_writer.add_histogram("xj_latent", zjs, global_step=n_iter)
|
||||
|
||||
# normalize projection feature vectors
|
||||
zis = F.normalize(zis, dim=1)
|
||||
|
|
31
utils.py
31
utils.py
|
@ -7,24 +7,24 @@ np.random.seed(0)
|
|||
cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
|
||||
|
||||
|
||||
def get_train_validation_data_loaders(train_dataset, config):
|
||||
def get_train_validation_data_loaders(train_dataset, batch_size, num_workers, valid_size, **ignored):
|
||||
# obtain training indices that will be used for validation
|
||||
num_train = len(train_dataset)
|
||||
indices = list(range(num_train))
|
||||
np.random.shuffle(indices)
|
||||
split = int(np.floor(config['valid_size'] * num_train))
|
||||
|
||||
split = int(np.floor(valid_size * num_train))
|
||||
train_idx, valid_idx = indices[split:], indices[:split]
|
||||
|
||||
# define samplers for obtaining training and validation batches
|
||||
train_sampler = SubsetRandomSampler(train_idx)
|
||||
valid_sampler = SubsetRandomSampler(valid_idx)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], sampler=train_sampler,
|
||||
num_workers=config['num_workers'], drop_last=True, shuffle=False)
|
||||
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler,
|
||||
num_workers=num_workers, drop_last=True, shuffle=False)
|
||||
|
||||
valid_loader = DataLoader(train_dataset, batch_size=config['batch_size'], sampler=valid_sampler,
|
||||
num_workers=config['num_workers'],
|
||||
drop_last=True)
|
||||
valid_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=valid_sampler,
|
||||
num_workers=num_workers, drop_last=True)
|
||||
return train_loader, valid_loader
|
||||
|
||||
|
||||
|
@ -39,14 +39,6 @@ def get_negative_mask(batch_size):
|
|||
return negative_mask
|
||||
|
||||
|
||||
def _dot_simililarity_dim1(x, y):
|
||||
# x shape: (N, 1, C)
|
||||
# y shape: (N, C, 1)
|
||||
# v shape: (N, 1, 1)
|
||||
v = torch.bmm(x.unsqueeze(1), y.unsqueeze(2)) #
|
||||
return v
|
||||
|
||||
|
||||
def _dot_simililarity_dim2(x, y):
|
||||
v = torch.tensordot(x.unsqueeze(1), y.T.unsqueeze(0), dims=2)
|
||||
# x shape: (N, 1, C)
|
||||
|
@ -55,11 +47,6 @@ def _dot_simililarity_dim2(x, y):
|
|||
return v
|
||||
|
||||
|
||||
def _cosine_simililarity_dim1(x, y):
|
||||
v = cosine_similarity(x, y)
|
||||
return v
|
||||
|
||||
|
||||
def _cosine_simililarity_dim2(x, y):
|
||||
# x shape: (N, 1, C)
|
||||
# y shape: (1, 2N, C)
|
||||
|
@ -70,6 +57,6 @@ def _cosine_simililarity_dim2(x, y):
|
|||
|
||||
def get_similarity_function(use_cosine_similarity):
|
||||
if use_cosine_similarity:
|
||||
return _cosine_simililarity_dim1, _cosine_simililarity_dim2
|
||||
return _cosine_simililarity_dim2
|
||||
else:
|
||||
return _dot_simililarity_dim1, _dot_simililarity_dim2
|
||||
return _dot_simililarity_dim2
|
||||
|
|
Loading…
Reference in New Issue