diff --git a/feature_eval/mini_batch_logistic_regression_evaluator.ipynb b/feature_eval/mini_batch_logistic_regression_evaluator.ipynb index f69fd40..f64e920 100644 --- a/feature_eval/mini_batch_logistic_regression_evaluator.ipynb +++ b/feature_eval/mini_batch_logistic_regression_evaluator.ipynb @@ -20,261 +20,26 @@ "version": "3.6.6" }, "colab": { - "name": "Mini-batch-logistic-regression-evaluator.ipynb", - "provenance": [] + "name": "Copy of mini-batch-logistic-regression-evaluator.ipynb", + "provenance": [], + "include_colab_link": true }, "accelerator": "GPU", "widgets": { - "application/vnd.jupyter.widget-state+json": { - "bcf2585d31644e0f86569e604b2e635b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "state": { - "_view_name": "HBoxView", - "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_2612abdc916d47418dda7287807a00ce", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_027c3ca8839846fcae9d6bb23fb10399", - "IPY_MODEL_1d09572d2433498caa268567c838e640" - ] - } - }, - "2612abdc916d47418dda7287807a00ce": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "027c3ca8839846fcae9d6bb23fb10399": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_08cddf6f231a4e89ab8e1e026cf11796", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "info", - "max": 1, - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": 1, - "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_75267826defa4565be4bed232272434e" - } - }, - "1d09572d2433498caa268567c838e640": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_8c189a0cd687479dba885a9c2d47fb64", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": " 2640404480/? [01:10<00:00, 98486594.59it/s]", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_b6528931de654b3c85b94bec14f4891b" - } - }, - "08cddf6f231a4e89ab8e1e026cf11796": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "initial", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" - } - }, - "75267826defa4565be4bed232272434e": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "8c189a0cd687479dba885a9c2d47fb64": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" - } - }, - "b6528931de654b3c85b94bec14f4891b": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - } - } + "application/vnd.jupyter.widget-state+json": {} } }, "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, { "cell_type": "code", "metadata": { @@ -285,13 +50,8 @@ "import sys\n", "import numpy as np\n", "import os\n", - "from sklearn.neighbors import KNeighborsClassifier\n", "import yaml\n", "import matplotlib.pyplot as plt\n", - "from sklearn.decomposition import PCA\n", - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn import preprocessing\n", - "import importlib.util\n", "import torchvision" ], "execution_count": null, @@ -522,7 +282,7 @@ "elif config.arch == 'resnet50':\n", " model = torchvision.models.resnet50(pretrained=False, num_classes=10).to(device)" ], - "execution_count": null, + "execution_count": 11, "outputs": [] }, { @@ -542,7 +302,7 @@ " state_dict[k[len(\"backbone.\"):]] = state_dict[k]\n", " del state_dict[k]" ], - "execution_count": null, + "execution_count": 12, "outputs": [] }, { @@ -554,7 +314,7 @@ "log = model.load_state_dict(state_dict, strict=False)\n", "assert log.missing_keys == ['fc.weight', 'fc.bias']" ], - "execution_count": null, + "execution_count": 13, "outputs": [] }, { @@ -563,19 +323,12 @@ "id": "_GC0a14uWRr6", "colab": { "base_uri": "https://localhost:8080/", - "height": 117, + "height": 102, "referenced_widgets": [ - "bcf2585d31644e0f86569e604b2e635b", - "2612abdc916d47418dda7287807a00ce", - "027c3ca8839846fcae9d6bb23fb10399", - "1d09572d2433498caa268567c838e640", - "08cddf6f231a4e89ab8e1e026cf11796", - "75267826defa4565be4bed232272434e", - "8c189a0cd687479dba885a9c2d47fb64", - "b6528931de654b3c85b94bec14f4891b" + "48ebf2f69d1f4f5a9208cd2923eb5eac" ] }, - "outputId": "56db3fac-10cc-4985-932d-878375ccd18f" + "outputId": "6c3b86ad-b568-4c68-c1fb-1f7b2abbb6aa" }, "source": [ "if config.dataset_name == 'cifar10':\n", @@ -584,7 +337,7 @@ " train_loader, test_loader = get_stl10_data_loaders(download=True)\n", "print(\"Dataset:\", config.dataset_name)" ], - "execution_count": null, + "execution_count": 14, "outputs": [ { "output_type": "stream", @@ -597,9 +350,9 @@ "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bcf2585d31644e0f86569e604b2e635b", - "version_minor": 0, - "version_major": 2 + "model_id": "48ebf2f69d1f4f5a9208cd2923eb5eac", + "version_major": 2, + "version_minor": 0 }, "text/plain": [ "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" @@ -634,7 +387,7 @@ "parameters = list(filter(lambda p: p.requires_grad, model.parameters()))\n", "assert len(parameters) == 2 # fc.weight, fc.bias" ], - "execution_count": null, + "execution_count": 15, "outputs": [] }, { @@ -646,7 +399,7 @@ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=0.0008)\n", "criterion = torch.nn.CrossEntropyLoss().to(device)" ], - "execution_count": null, + "execution_count": 16, "outputs": [] }, { @@ -671,7 +424,7 @@ " res.append(correct_k.mul_(100.0 / batch_size))\n", " return res" ], - "execution_count": null, + "execution_count": 17, "outputs": [] }, { @@ -681,7 +434,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "95b285c8-2b26-4d2c-ccc3-bb9111871c8d" + "outputId": "d6127d8e-836f-4e69-a344-fee7e836d63a" }, "source": [ "epochs = 100\n", @@ -717,111 +470,111 @@ " top5_accuracy /= (counter + 1)\n", " print(f\"Epoch {epoch}\\tTop1 Train accuracy {top1_train_accuracy.item()}\\tTop1 Test accuracy: {top1_accuracy.item()}\\tTop5 test acc: {top5_accuracy.item()}\")" ], - "execution_count": null, + "execution_count": 18, "outputs": [ { "output_type": "stream", "text": [ - "Top1 Train accuracy 29.47265625\tTop1 Test accuracy: 42.4560546875\tTop5 test acc: 92.41943359375\n", - "Top1 Train accuracy 49.47265625\tTop1 Test accuracy: 53.662109375\tTop5 test acc: 96.15478515625\n", - "Top1 Train accuracy 56.85546875\tTop1 Test accuracy: 57.92236328125\tTop5 test acc: 96.74072265625\n", - "Top1 Train accuracy 59.3359375\tTop1 Test accuracy: 59.9365234375\tTop5 test acc: 97.021484375\n", - "Top1 Train accuracy 60.8984375\tTop1 Test accuracy: 61.1572265625\tTop5 test acc: 97.15576171875\n", - "Top1 Train accuracy 61.89453125\tTop1 Test accuracy: 61.8408203125\tTop5 test acc: 97.2900390625\n", - "Top1 Train accuracy 62.48046875\tTop1 Test accuracy: 62.5244140625\tTop5 test acc: 97.3388671875\n", - "Top1 Train accuracy 63.125\tTop1 Test accuracy: 63.037109375\tTop5 test acc: 97.44873046875\n", - "Top1 Train accuracy 64.4140625\tTop1 Test accuracy: 63.39111328125\tTop5 test acc: 97.54638671875\n", - "Top1 Train accuracy 64.86328125\tTop1 Test accuracy: 63.85498046875\tTop5 test acc: 97.5830078125\n", - "Top1 Train accuracy 65.15625\tTop1 Test accuracy: 64.0869140625\tTop5 test acc: 97.65625\n", - "Top1 Train accuracy 65.56640625\tTop1 Test accuracy: 64.34326171875\tTop5 test acc: 97.69287109375\n", - "Top1 Train accuracy 65.859375\tTop1 Test accuracy: 64.48974609375\tTop5 test acc: 97.7294921875\n", - "Top1 Train accuracy 66.03515625\tTop1 Test accuracy: 64.83154296875\tTop5 test acc: 97.75390625\n", - "Top1 Train accuracy 66.171875\tTop1 Test accuracy: 65.02685546875\tTop5 test acc: 97.79052734375\n", - "Top1 Train accuracy 66.484375\tTop1 Test accuracy: 65.46630859375\tTop5 test acc: 97.7783203125\n", - "Top1 Train accuracy 66.953125\tTop1 Test accuracy: 65.66162109375\tTop5 test acc: 97.8515625\n", - "Top1 Train accuracy 67.2265625\tTop1 Test accuracy: 65.91796875\tTop5 test acc: 97.93701171875\n", - "Top1 Train accuracy 67.48046875\tTop1 Test accuracy: 65.97900390625\tTop5 test acc: 97.91259765625\n", - "Top1 Train accuracy 67.8125\tTop1 Test accuracy: 66.11328125\tTop5 test acc: 97.93701171875\n", - "Top1 Train accuracy 68.046875\tTop1 Test accuracy: 66.3330078125\tTop5 test acc: 97.9736328125\n", - "Top1 Train accuracy 68.45703125\tTop1 Test accuracy: 66.5283203125\tTop5 test acc: 97.94921875\n", - "Top1 Train accuracy 68.59375\tTop1 Test accuracy: 66.63818359375\tTop5 test acc: 97.94921875\n", - "Top1 Train accuracy 68.7890625\tTop1 Test accuracy: 66.748046875\tTop5 test acc: 97.93701171875\n", - "Top1 Train accuracy 69.00390625\tTop1 Test accuracy: 66.90673828125\tTop5 test acc: 97.9248046875\n", - "Top1 Train accuracy 69.21875\tTop1 Test accuracy: 67.0654296875\tTop5 test acc: 97.9736328125\n", - "Top1 Train accuracy 69.35546875\tTop1 Test accuracy: 67.0654296875\tTop5 test acc: 97.9736328125\n", - "Top1 Train accuracy 69.66796875\tTop1 Test accuracy: 67.2119140625\tTop5 test acc: 97.93701171875\n", - "Top1 Train accuracy 69.765625\tTop1 Test accuracy: 67.24853515625\tTop5 test acc: 97.9736328125\n", - "Top1 Train accuracy 69.82421875\tTop1 Test accuracy: 67.4072265625\tTop5 test acc: 97.98583984375\n", - "Top1 Train accuracy 69.9609375\tTop1 Test accuracy: 67.431640625\tTop5 test acc: 97.98583984375\n", - "Top1 Train accuracy 70.09765625\tTop1 Test accuracy: 67.4560546875\tTop5 test acc: 97.998046875\n", - "Top1 Train accuracy 70.15625\tTop1 Test accuracy: 67.44384765625\tTop5 test acc: 98.01025390625\n", - "Top1 Train accuracy 70.29296875\tTop1 Test accuracy: 67.54150390625\tTop5 test acc: 98.0224609375\n", - "Top1 Train accuracy 70.41015625\tTop1 Test accuracy: 67.61474609375\tTop5 test acc: 98.05908203125\n", - "Top1 Train accuracy 70.5078125\tTop1 Test accuracy: 67.67578125\tTop5 test acc: 98.0712890625\n", - "Top1 Train accuracy 70.64453125\tTop1 Test accuracy: 67.73681640625\tTop5 test acc: 98.08349609375\n", - "Top1 Train accuracy 70.859375\tTop1 Test accuracy: 67.76123046875\tTop5 test acc: 98.0712890625\n", - "Top1 Train accuracy 70.8984375\tTop1 Test accuracy: 67.88330078125\tTop5 test acc: 98.08349609375\n", - "Top1 Train accuracy 71.07421875\tTop1 Test accuracy: 67.95654296875\tTop5 test acc: 98.095703125\n", - "Top1 Train accuracy 71.11328125\tTop1 Test accuracy: 67.93212890625\tTop5 test acc: 98.1201171875\n", - "Top1 Train accuracy 71.2890625\tTop1 Test accuracy: 68.0419921875\tTop5 test acc: 98.10791015625\n", - "Top1 Train accuracy 71.3671875\tTop1 Test accuracy: 68.10302734375\tTop5 test acc: 98.13232421875\n", - "Top1 Train accuracy 71.42578125\tTop1 Test accuracy: 68.1396484375\tTop5 test acc: 98.13232421875\n", - "Top1 Train accuracy 71.4453125\tTop1 Test accuracy: 68.1396484375\tTop5 test acc: 98.13232421875\n", - "Top1 Train accuracy 71.50390625\tTop1 Test accuracy: 68.1640625\tTop5 test acc: 98.1201171875\n", - "Top1 Train accuracy 71.484375\tTop1 Test accuracy: 68.2373046875\tTop5 test acc: 98.14453125\n", - "Top1 Train accuracy 71.6015625\tTop1 Test accuracy: 68.34716796875\tTop5 test acc: 98.15673828125\n", - "Top1 Train accuracy 71.7578125\tTop1 Test accuracy: 68.39599609375\tTop5 test acc: 98.15673828125\n", - "Top1 Train accuracy 71.89453125\tTop1 Test accuracy: 68.37158203125\tTop5 test acc: 98.20556640625\n", - "Top1 Train accuracy 72.01171875\tTop1 Test accuracy: 68.4326171875\tTop5 test acc: 98.20556640625\n", - "Top1 Train accuracy 72.1484375\tTop1 Test accuracy: 68.44482421875\tTop5 test acc: 98.2177734375\n", - "Top1 Train accuracy 72.1875\tTop1 Test accuracy: 68.51806640625\tTop5 test acc: 98.25439453125\n", - "Top1 Train accuracy 72.28515625\tTop1 Test accuracy: 68.603515625\tTop5 test acc: 98.2421875\n", - "Top1 Train accuracy 72.36328125\tTop1 Test accuracy: 68.5791015625\tTop5 test acc: 98.2666015625\n", - "Top1 Train accuracy 72.5390625\tTop1 Test accuracy: 68.61572265625\tTop5 test acc: 98.2666015625\n", - "Top1 Train accuracy 72.59765625\tTop1 Test accuracy: 68.64013671875\tTop5 test acc: 98.2666015625\n", - "Top1 Train accuracy 73.02734375\tTop1 Test accuracy: 68.7255859375\tTop5 test acc: 98.25439453125\n", - "Top1 Train accuracy 73.18359375\tTop1 Test accuracy: 68.76220703125\tTop5 test acc: 98.2666015625\n", - "Top1 Train accuracy 73.26171875\tTop1 Test accuracy: 68.8232421875\tTop5 test acc: 98.291015625\n", - "Top1 Train accuracy 73.359375\tTop1 Test accuracy: 68.85986328125\tTop5 test acc: 98.27880859375\n", - "Top1 Train accuracy 73.45703125\tTop1 Test accuracy: 68.8720703125\tTop5 test acc: 98.32763671875\n", - "Top1 Train accuracy 73.49609375\tTop1 Test accuracy: 68.9208984375\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 73.53515625\tTop1 Test accuracy: 68.8720703125\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 73.53515625\tTop1 Test accuracy: 68.9208984375\tTop5 test acc: 98.3642578125\n", - "Top1 Train accuracy 73.65234375\tTop1 Test accuracy: 69.00634765625\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 73.76953125\tTop1 Test accuracy: 69.0185546875\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 73.9453125\tTop1 Test accuracy: 69.0673828125\tTop5 test acc: 98.35205078125\n", - "Top1 Train accuracy 74.00390625\tTop1 Test accuracy: 69.1162109375\tTop5 test acc: 98.35205078125\n", - "Top1 Train accuracy 74.0625\tTop1 Test accuracy: 69.140625\tTop5 test acc: 98.3642578125\n", - "Top1 Train accuracy 74.12109375\tTop1 Test accuracy: 69.17724609375\tTop5 test acc: 98.3642578125\n", - "Top1 Train accuracy 74.21875\tTop1 Test accuracy: 69.20166015625\tTop5 test acc: 98.35205078125\n", - "Top1 Train accuracy 74.21875\tTop1 Test accuracy: 69.2626953125\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 74.23828125\tTop1 Test accuracy: 69.3359375\tTop5 test acc: 98.33984375\n", - "Top1 Train accuracy 74.23828125\tTop1 Test accuracy: 69.37255859375\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.2578125\tTop1 Test accuracy: 69.42138671875\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.27734375\tTop1 Test accuracy: 69.482421875\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.375\tTop1 Test accuracy: 69.51904296875\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.39453125\tTop1 Test accuracy: 69.6044921875\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.43359375\tTop1 Test accuracy: 69.6044921875\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.43359375\tTop1 Test accuracy: 69.6044921875\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.4921875\tTop1 Test accuracy: 69.64111328125\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.5703125\tTop1 Test accuracy: 69.7021484375\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.66796875\tTop1 Test accuracy: 69.775390625\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.6875\tTop1 Test accuracy: 69.775390625\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.74609375\tTop1 Test accuracy: 69.76318359375\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.74609375\tTop1 Test accuracy: 69.78759765625\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 74.84375\tTop1 Test accuracy: 69.81201171875\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 74.94140625\tTop1 Test accuracy: 69.88525390625\tTop5 test acc: 98.32763671875\n", - "Top1 Train accuracy 75.0390625\tTop1 Test accuracy: 69.8974609375\tTop5 test acc: 98.32763671875\n", - "Top1 Train accuracy 75.05859375\tTop1 Test accuracy: 69.921875\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 75.078125\tTop1 Test accuracy: 69.95849609375\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 75.15625\tTop1 Test accuracy: 69.921875\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 75.21484375\tTop1 Test accuracy: 69.9462890625\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 75.17578125\tTop1 Test accuracy: 69.93408203125\tTop5 test acc: 98.30322265625\n", - "Top1 Train accuracy 75.17578125\tTop1 Test accuracy: 69.98291015625\tTop5 test acc: 98.291015625\n", - "Top1 Train accuracy 75.234375\tTop1 Test accuracy: 69.95849609375\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 75.234375\tTop1 Test accuracy: 69.98291015625\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 75.2734375\tTop1 Test accuracy: 70.00732421875\tTop5 test acc: 98.3154296875\n", - "Top1 Train accuracy 75.37109375\tTop1 Test accuracy: 70.01953125\tTop5 test acc: 98.3154296875\n" + "Epoch 0\tTop1 Train accuracy 27.890625\tTop1 Test accuracy: 42.05322265625\tTop5 test acc: 93.29833984375\n", + "Epoch 1\tTop1 Train accuracy 49.921875\tTop1 Test accuracy: 54.45556640625\tTop5 test acc: 96.1181640625\n", + "Epoch 2\tTop1 Train accuracy 57.3828125\tTop1 Test accuracy: 58.9599609375\tTop5 test acc: 96.9482421875\n", + "Epoch 3\tTop1 Train accuracy 60.01953125\tTop1 Test accuracy: 60.38818359375\tTop5 test acc: 97.03369140625\n", + "Epoch 4\tTop1 Train accuracy 61.7578125\tTop1 Test accuracy: 61.572265625\tTop5 test acc: 97.1923828125\n", + "Epoch 5\tTop1 Train accuracy 62.91015625\tTop1 Test accuracy: 62.21923828125\tTop5 test acc: 97.30224609375\n", + "Epoch 6\tTop1 Train accuracy 63.57421875\tTop1 Test accuracy: 62.6220703125\tTop5 test acc: 97.4365234375\n", + "Epoch 7\tTop1 Train accuracy 64.12109375\tTop1 Test accuracy: 63.18359375\tTop5 test acc: 97.55859375\n", + "Epoch 8\tTop1 Train accuracy 64.82421875\tTop1 Test accuracy: 63.51318359375\tTop5 test acc: 97.57080078125\n", + "Epoch 9\tTop1 Train accuracy 65.17578125\tTop1 Test accuracy: 63.80615234375\tTop5 test acc: 97.59521484375\n", + "Epoch 10\tTop1 Train accuracy 65.5859375\tTop1 Test accuracy: 64.14794921875\tTop5 test acc: 97.6318359375\n", + "Epoch 11\tTop1 Train accuracy 65.80078125\tTop1 Test accuracy: 64.51416015625\tTop5 test acc: 97.61962890625\n", + "Epoch 12\tTop1 Train accuracy 66.03515625\tTop1 Test accuracy: 64.70947265625\tTop5 test acc: 97.69287109375\n", + "Epoch 13\tTop1 Train accuracy 66.42578125\tTop1 Test accuracy: 64.88037109375\tTop5 test acc: 97.705078125\n", + "Epoch 14\tTop1 Train accuracy 66.9140625\tTop1 Test accuracy: 65.07568359375\tTop5 test acc: 97.76611328125\n", + "Epoch 15\tTop1 Train accuracy 67.265625\tTop1 Test accuracy: 65.24658203125\tTop5 test acc: 97.81494140625\n", + "Epoch 16\tTop1 Train accuracy 67.48046875\tTop1 Test accuracy: 65.46630859375\tTop5 test acc: 97.8515625\n", + "Epoch 17\tTop1 Train accuracy 67.6171875\tTop1 Test accuracy: 65.71044921875\tTop5 test acc: 97.86376953125\n", + "Epoch 18\tTop1 Train accuracy 67.83203125\tTop1 Test accuracy: 65.966796875\tTop5 test acc: 97.8759765625\n", + "Epoch 19\tTop1 Train accuracy 68.0078125\tTop1 Test accuracy: 66.05224609375\tTop5 test acc: 97.88818359375\n", + "Epoch 20\tTop1 Train accuracy 68.1640625\tTop1 Test accuracy: 66.17431640625\tTop5 test acc: 97.88818359375\n", + "Epoch 21\tTop1 Train accuracy 68.37890625\tTop1 Test accuracy: 66.30859375\tTop5 test acc: 97.900390625\n", + "Epoch 22\tTop1 Train accuracy 68.49609375\tTop1 Test accuracy: 66.50390625\tTop5 test acc: 97.88818359375\n", + "Epoch 23\tTop1 Train accuracy 68.75\tTop1 Test accuracy: 66.6259765625\tTop5 test acc: 97.91259765625\n", + "Epoch 24\tTop1 Train accuracy 68.90625\tTop1 Test accuracy: 66.68701171875\tTop5 test acc: 97.96142578125\n", + "Epoch 25\tTop1 Train accuracy 68.984375\tTop1 Test accuracy: 66.8212890625\tTop5 test acc: 97.998046875\n", + "Epoch 26\tTop1 Train accuracy 69.39453125\tTop1 Test accuracy: 66.9677734375\tTop5 test acc: 98.0224609375\n", + "Epoch 27\tTop1 Train accuracy 69.4921875\tTop1 Test accuracy: 67.1142578125\tTop5 test acc: 98.01025390625\n", + "Epoch 28\tTop1 Train accuracy 69.6484375\tTop1 Test accuracy: 67.1630859375\tTop5 test acc: 98.0224609375\n", + "Epoch 29\tTop1 Train accuracy 69.7265625\tTop1 Test accuracy: 67.19970703125\tTop5 test acc: 98.03466796875\n", + "Epoch 30\tTop1 Train accuracy 69.74609375\tTop1 Test accuracy: 67.24853515625\tTop5 test acc: 98.05908203125\n", + "Epoch 31\tTop1 Train accuracy 69.921875\tTop1 Test accuracy: 67.37060546875\tTop5 test acc: 98.03466796875\n", + "Epoch 32\tTop1 Train accuracy 70.078125\tTop1 Test accuracy: 67.46826171875\tTop5 test acc: 98.03466796875\n", + "Epoch 33\tTop1 Train accuracy 70.25390625\tTop1 Test accuracy: 67.5048828125\tTop5 test acc: 98.0712890625\n", + "Epoch 34\tTop1 Train accuracy 70.33203125\tTop1 Test accuracy: 67.59033203125\tTop5 test acc: 98.095703125\n", + "Epoch 35\tTop1 Train accuracy 70.48828125\tTop1 Test accuracy: 67.73681640625\tTop5 test acc: 98.13232421875\n", + "Epoch 36\tTop1 Train accuracy 70.5859375\tTop1 Test accuracy: 67.83447265625\tTop5 test acc: 98.1201171875\n", + "Epoch 37\tTop1 Train accuracy 70.625\tTop1 Test accuracy: 67.85888671875\tTop5 test acc: 98.13232421875\n", + "Epoch 38\tTop1 Train accuracy 70.78125\tTop1 Test accuracy: 67.88330078125\tTop5 test acc: 98.13232421875\n", + "Epoch 39\tTop1 Train accuracy 70.91796875\tTop1 Test accuracy: 67.919921875\tTop5 test acc: 98.10791015625\n", + "Epoch 40\tTop1 Train accuracy 70.95703125\tTop1 Test accuracy: 67.95654296875\tTop5 test acc: 98.10791015625\n", + "Epoch 41\tTop1 Train accuracy 71.03515625\tTop1 Test accuracy: 68.00537109375\tTop5 test acc: 98.1201171875\n", + "Epoch 42\tTop1 Train accuracy 71.07421875\tTop1 Test accuracy: 68.06640625\tTop5 test acc: 98.15673828125\n", + "Epoch 43\tTop1 Train accuracy 71.15234375\tTop1 Test accuracy: 68.12744140625\tTop5 test acc: 98.15673828125\n", + "Epoch 44\tTop1 Train accuracy 71.2109375\tTop1 Test accuracy: 68.1396484375\tTop5 test acc: 98.1689453125\n", + "Epoch 45\tTop1 Train accuracy 71.25\tTop1 Test accuracy: 68.1396484375\tTop5 test acc: 98.1689453125\n", + "Epoch 46\tTop1 Train accuracy 71.46484375\tTop1 Test accuracy: 68.15185546875\tTop5 test acc: 98.193359375\n", + "Epoch 47\tTop1 Train accuracy 71.58203125\tTop1 Test accuracy: 68.22509765625\tTop5 test acc: 98.2177734375\n", + "Epoch 48\tTop1 Train accuracy 71.6796875\tTop1 Test accuracy: 68.27392578125\tTop5 test acc: 98.22998046875\n", + "Epoch 49\tTop1 Train accuracy 71.8359375\tTop1 Test accuracy: 68.3349609375\tTop5 test acc: 98.22998046875\n", + "Epoch 50\tTop1 Train accuracy 71.93359375\tTop1 Test accuracy: 68.44482421875\tTop5 test acc: 98.2421875\n", + "Epoch 51\tTop1 Train accuracy 72.01171875\tTop1 Test accuracy: 68.4814453125\tTop5 test acc: 98.2177734375\n", + "Epoch 52\tTop1 Train accuracy 72.0703125\tTop1 Test accuracy: 68.505859375\tTop5 test acc: 98.2177734375\n", + "Epoch 53\tTop1 Train accuracy 72.2265625\tTop1 Test accuracy: 68.54248046875\tTop5 test acc: 98.22998046875\n", + "Epoch 54\tTop1 Train accuracy 72.24609375\tTop1 Test accuracy: 68.5791015625\tTop5 test acc: 98.22998046875\n", + "Epoch 55\tTop1 Train accuracy 72.34375\tTop1 Test accuracy: 68.65234375\tTop5 test acc: 98.25439453125\n", + "Epoch 56\tTop1 Train accuracy 72.421875\tTop1 Test accuracy: 68.71337890625\tTop5 test acc: 98.3154296875\n", + "Epoch 57\tTop1 Train accuracy 72.51953125\tTop1 Test accuracy: 68.71337890625\tTop5 test acc: 98.3154296875\n", + "Epoch 58\tTop1 Train accuracy 72.94921875\tTop1 Test accuracy: 68.76220703125\tTop5 test acc: 98.3154296875\n", + "Epoch 59\tTop1 Train accuracy 72.98828125\tTop1 Test accuracy: 68.83544921875\tTop5 test acc: 98.3154296875\n", + "Epoch 60\tTop1 Train accuracy 73.0859375\tTop1 Test accuracy: 68.88427734375\tTop5 test acc: 98.30322265625\n", + "Epoch 61\tTop1 Train accuracy 73.18359375\tTop1 Test accuracy: 68.896484375\tTop5 test acc: 98.32763671875\n", + "Epoch 62\tTop1 Train accuracy 73.3984375\tTop1 Test accuracy: 68.88427734375\tTop5 test acc: 98.33984375\n", + "Epoch 63\tTop1 Train accuracy 73.4375\tTop1 Test accuracy: 68.95751953125\tTop5 test acc: 98.33984375\n", + "Epoch 64\tTop1 Train accuracy 73.515625\tTop1 Test accuracy: 68.994140625\tTop5 test acc: 98.32763671875\n", + "Epoch 65\tTop1 Train accuracy 73.57421875\tTop1 Test accuracy: 68.9697265625\tTop5 test acc: 98.3154296875\n", + "Epoch 66\tTop1 Train accuracy 73.61328125\tTop1 Test accuracy: 69.03076171875\tTop5 test acc: 98.32763671875\n", + "Epoch 67\tTop1 Train accuracy 73.671875\tTop1 Test accuracy: 69.07958984375\tTop5 test acc: 98.3154296875\n", + "Epoch 68\tTop1 Train accuracy 73.7109375\tTop1 Test accuracy: 69.12841796875\tTop5 test acc: 98.3154296875\n", + "Epoch 69\tTop1 Train accuracy 73.8671875\tTop1 Test accuracy: 69.20166015625\tTop5 test acc: 98.3154296875\n", + "Epoch 70\tTop1 Train accuracy 73.984375\tTop1 Test accuracy: 69.25048828125\tTop5 test acc: 98.33984375\n", + "Epoch 71\tTop1 Train accuracy 74.00390625\tTop1 Test accuracy: 69.2626953125\tTop5 test acc: 98.35205078125\n", + "Epoch 72\tTop1 Train accuracy 74.00390625\tTop1 Test accuracy: 69.3115234375\tTop5 test acc: 98.33984375\n", + "Epoch 73\tTop1 Train accuracy 74.0234375\tTop1 Test accuracy: 69.34814453125\tTop5 test acc: 98.35205078125\n", + "Epoch 74\tTop1 Train accuracy 74.140625\tTop1 Test accuracy: 69.37255859375\tTop5 test acc: 98.33984375\n", + "Epoch 75\tTop1 Train accuracy 74.23828125\tTop1 Test accuracy: 69.4091796875\tTop5 test acc: 98.35205078125\n", + "Epoch 76\tTop1 Train accuracy 74.31640625\tTop1 Test accuracy: 69.4091796875\tTop5 test acc: 98.37646484375\n", + "Epoch 77\tTop1 Train accuracy 74.43359375\tTop1 Test accuracy: 69.4091796875\tTop5 test acc: 98.3642578125\n", + "Epoch 78\tTop1 Train accuracy 74.55078125\tTop1 Test accuracy: 69.3603515625\tTop5 test acc: 98.3642578125\n", + "Epoch 79\tTop1 Train accuracy 74.58984375\tTop1 Test accuracy: 69.37255859375\tTop5 test acc: 98.3642578125\n", + "Epoch 80\tTop1 Train accuracy 74.609375\tTop1 Test accuracy: 69.42138671875\tTop5 test acc: 98.3642578125\n", + "Epoch 81\tTop1 Train accuracy 74.6484375\tTop1 Test accuracy: 69.49462890625\tTop5 test acc: 98.3642578125\n", + "Epoch 82\tTop1 Train accuracy 74.6875\tTop1 Test accuracy: 69.47021484375\tTop5 test acc: 98.35205078125\n", + "Epoch 83\tTop1 Train accuracy 74.7265625\tTop1 Test accuracy: 69.5556640625\tTop5 test acc: 98.35205078125\n", + "Epoch 84\tTop1 Train accuracy 74.78515625\tTop1 Test accuracy: 69.59228515625\tTop5 test acc: 98.35205078125\n", + "Epoch 85\tTop1 Train accuracy 74.8828125\tTop1 Test accuracy: 69.6533203125\tTop5 test acc: 98.35205078125\n", + "Epoch 86\tTop1 Train accuracy 74.94140625\tTop1 Test accuracy: 69.677734375\tTop5 test acc: 98.3642578125\n", + "Epoch 87\tTop1 Train accuracy 75.0390625\tTop1 Test accuracy: 69.7509765625\tTop5 test acc: 98.35205078125\n", + "Epoch 88\tTop1 Train accuracy 75.0390625\tTop1 Test accuracy: 69.71435546875\tTop5 test acc: 98.35205078125\n", + "Epoch 89\tTop1 Train accuracy 75.1171875\tTop1 Test accuracy: 69.775390625\tTop5 test acc: 98.33984375\n", + "Epoch 90\tTop1 Train accuracy 75.21484375\tTop1 Test accuracy: 69.7509765625\tTop5 test acc: 98.33984375\n", + "Epoch 91\tTop1 Train accuracy 75.25390625\tTop1 Test accuracy: 69.82421875\tTop5 test acc: 98.32763671875\n", + "Epoch 92\tTop1 Train accuracy 75.29296875\tTop1 Test accuracy: 69.86083984375\tTop5 test acc: 98.33984375\n", + "Epoch 93\tTop1 Train accuracy 75.33203125\tTop1 Test accuracy: 69.88525390625\tTop5 test acc: 98.35205078125\n", + "Epoch 94\tTop1 Train accuracy 75.37109375\tTop1 Test accuracy: 69.81201171875\tTop5 test acc: 98.3642578125\n", + "Epoch 95\tTop1 Train accuracy 75.37109375\tTop1 Test accuracy: 69.83642578125\tTop5 test acc: 98.37646484375\n", + "Epoch 96\tTop1 Train accuracy 75.37109375\tTop1 Test accuracy: 69.83642578125\tTop5 test acc: 98.37646484375\n", + "Epoch 97\tTop1 Train accuracy 75.41015625\tTop1 Test accuracy: 69.86083984375\tTop5 test acc: 98.37646484375\n", + "Epoch 98\tTop1 Train accuracy 75.41015625\tTop1 Test accuracy: 69.90966796875\tTop5 test acc: 98.37646484375\n", + "Epoch 99\tTop1 Train accuracy 75.46875\tTop1 Test accuracy: 69.921875\tTop5 test acc: 98.37646484375\n" ], "name": "stdout" } @@ -835,8 +588,8 @@ "source": [ "" ], - "execution_count": null, + "execution_count": 18, "outputs": [] } ] -} +} \ No newline at end of file