import os import shutil import torch import yaml def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') def save_config_file(model_checkpoints_folder, args): if not os.path.exists(model_checkpoints_folder): os.makedirs(model_checkpoints_folder) with open(os.path.join(model_checkpoints_folder, 'config.yml'), 'w') as outfile: yaml.dump(args, outfile, default_flow_style=False) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res