import cv2 import numpy as np import torch import torchvision.transforms as transforms np.random.seed(0) def get_negative_mask(batch_size): # return a mask that removes the similarity score of equal/similar images. # this function ensures that only distinct pair of images get their similarity scores # passed as negative examples negative_mask = torch.ones((batch_size, 2 * batch_size), dtype=bool) for i in range(batch_size): negative_mask[i, i] = 0 negative_mask[i, i + batch_size] = 0 return negative_mask class GaussianBlur(object): # Implements Gaussian blur as described in the SimCLR paper def __init__(self, min=0.1, max=2.0, kernel_size=9): self.min = min self.max = max self.kernel_size = kernel_size def __call__(self, sample): sample = np.array(sample) # blur the image with a 50% chance prob = np.random.random_sample() if prob < 0.5: sigma = (self.max - self.min) * np.random.random_sample() + self.min sample = cv2.GaussianBlur(sample, (self.kernel_size, self.kernel_size), sigma) return sample def get_augmentation_transform(s=1): # get a set of data augmentation transformations as described in the SimCLR paper. color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) data_aug_ope = transforms.Compose([transforms.ToPILImage(), transforms.RandomResizedCrop(96), transforms.RandomHorizontalFlip(), transforms.RandomApply([color_jitter], p=0.8), transforms.RandomGrayscale(p=0.2), GaussianBlur(), transforms.ToTensor()]) return data_aug_ope # if use_cosine_similarity: # cos1d = torch.nn.CosineSimilarity(dim=1) # cos2d = torch.nn.CosineSimilarity(dim=2) # similarity_dim1 = lambda x, y: cos1d(x, y.unsqueeze(0)) # similarity_dim2 = lambda x, y: cos2d(x, y.unsqueeze(0)) # else: # similarity_dim1 = lambda x, y: torch.bmm(x.unsqueeze(1), y.unsqueeze(2)) # similarity_dim2 = lambda x, y: torch.tensordot(x, y.T.unsqueeze(0), dims=2)