# PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations ### Blog post with full documentation: [Exploring SimCLR: A Simple Framework for Contrastive Learning of Visual Representations](https://sthalles.github.io/simple-self-supervised-learning/) #### For a Tensorflow 2.0 Implementation: [Tensorflow SimCLR](https://github.com/sthalles/SimCLR-tensorflow) ![Image of SimCLR Arch](https://sthalles.github.io/assets/contrastive-self-supervised/cover.png) ## Installation ``` $ conda create --name simclr python=3.7 --file requirements.txt $ conda activate simclr $ python run.py ``` ## Config file Before running SimCLR, make sure you choose the correct running configurations on the ```config.yaml``` file. ```yaml # A batch size of N, produces 2 * (N-1) negative samples. Original implementation uses a batch size of 8192 batch_size: 512 # Number of epochs to train epochs: 40 # Frequency to eval the similary score using the validation set eval_every_n_epochs: 1 # Specify a folder containing a pre-trained model to fine-tune fine_tune_from: 'Mar13_20-12-09_thallessilva' # Frequency to which tensorboard is updated log_every_n_steps: 50 # Model related parameters model: # Output dimensionality of the embedding vector z. Original implementation uses 2048 out_dim: 256 # The ConvNet base model. Choose one of: "resnet18" or "resnet50". Original implementation uses resnet50 base_model: "resnet18" # Dataset related parameters dataset: s: 1 # dataset input shape. For datasets containing images of different size, this defines the final input_shape: (96,96,3) # Number of workers for the data loader num_workers: 0 # Size of the validation set in percentage valid_size: 0.05 # NTXent loss related parameters loss: # Temperature parameter for the contrastive objective temperature: 0.5 # Distance metric for contrastive loss. If False, uses dot product. Original implementation uses cosine similarity. use_cosine_similarity: True ``` ## Feature Evaluation Feature evaluation is done using a linear model protocol. Features are learned using the ```STL10 train+unsupervised``` set and evaluated in the ```test``` set; Check the ```feature_eval/linear_feature_eval.ipynb``` notebook for reproducebility. | Feature Extractor | Method | Architecture | Top 1 | |:-------------------:|:------------:|:------------:|:-----:| | Logistic Regression | PCA Features | - | 36.0% | | KNN | PCA Features | - | 31.8% | | Logistic Regression | SimCLR | ResNet-18 | 75.0% | | KNN | SimCLR | ResNet-18 | 70.0% | ## Download pre-trained model - [ResNet-18](https://drive.google.com/open?id=1zDHvk1oE1k3b4ApsK1AdMREIAcpkG-We) Trained using ```STl10 unsupervised``` set.